Advertisement

Intramembrane Particles in the Postsynaptic Membranes of the S-, F-, and C-Type Synapses by Freeze-Fracturing, and Deep-Etching Studies on the Xenopus Spinal Cord

  • Hiroshi Watanabe
  • Hiroshi Washioka
  • Akira Tonosaki
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 287)

Abstract

In the CNS, the S-, F-and C~type of synapses used to be classified with TEM based on the appearance of synaptic vesicles and the specialization of synaptic membranes (Charlton and Gray, 1966; Uchizono, 1975; Watanabe/ 1981): The S-type, or Gray’s type I, synapse has spherical synaptic vesicles and more or less electron-dense substances in the subsynaptic cytoplasm. The F-type, or Gray’s type II, has flattened vesicles and symmetrically thickened pre-and postsynaptic membranes. The C-type is remarkable because of the subsurface cistern in the subsynaptic cytoplasm.

Keywords

Active Zone Postsynaptic Membrane Ventral Cochlear Nucleus INTRAMEMBRANE Particle Frog Spinal Cord 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonov, S, M., Kalinina, N. I., Kurchavyj, G. G., Magazanik, L. G., Shu-pliakov, 0. V., and Vesselkin, N. P., 1990, Identification of two types of excitatory monosynaptic inputs in frog spinal motoneurons, Neurosci. Let., 109:82–87.CrossRefGoogle Scholar
  2. Bixby, J. L., and Spitzer, N. C., 1984, The appearance and development of neurotransmitter sensitivity in Xenopus embryonic spinal neurons in vitro, J. Physiol., 353:143–155.PubMedGoogle Scholar
  3. Charlton, B. T., and Gray, E. G., 1966, Comparative electron microscopy of synapses in the vertebral spinal cord, J. Cell Sci., 1:67–80.PubMedGoogle Scholar
  4. Davidoff, M. S., and Irintchev, A. P., 1986, Acetylcholinesterase activity and type C synapses in the hypoglossal, facial and spinal-cord motor nuclei of rats, An electron-microscopy study, Histochemistry, 84:515–524.PubMedCrossRefGoogle Scholar
  5. Gulley, R. L., Landis, D. M. D., and Reese, T. S., 1978, Internal organization of membranes at end bulbs of Held in the anteroventral cochlear nucleus, J. Comp. Neurol., 180:707–742.PubMedCrossRefGoogle Scholar
  6. Heuser, J. E., and Reese, T. S., 1977, Structure of synapse, in: “The handbook of physiology, Section 1; The nervous system”, Americal Physiological Society, Bethesda, vol 1(1), pp.261–294.Google Scholar
  7. Möhler, H., Schoch, P., Richards, J. G., Häring, P., and Takacs, B., 1987, Structure and location of a GABA-A receptor complex in the central nervous system, J. Receptor Res., 7:617–628.Google Scholar
  8. Nistri, A., and Berti, C., 1983, Caffeine-induced potentiation of GABA effects on frog spinal cord: An electrophysiological study, BrainRes., 258:263–270.PubMedCrossRefGoogle Scholar
  9. Raviola, E., and Gilula, N. B., 1975, Intramembrane organization of specialized contacts in the outer plexiform layer of retina, J. Cell Biol., 65:192–222.PubMedCrossRefGoogle Scholar
  10. Sandri, C., Van Buren, J. M., and Akert, K., 1982, Membrane morphology of the vertebrate nervous system, A study with freeze~etch technique, Prog. Brain Res., (2nd revised edition), 46:121–155.Google Scholar
  11. Simpson, J. I., 1976, Functional synaptology of the spinal cord, in: “Frog Neurobiology”, R. Llinás and W. Precht, eds., Springer-Verlag, Berlin, pp.728–749.CrossRefGoogle Scholar
  12. Tonosaki, A., and Yamamoto, T.-Y., 1974, Double-replicating method for the freeze-fractured retina, J. Ultrastruct. Res., 47:86–94.PubMedCrossRefGoogle Scholar
  13. Uchizono, K., 1975, “Excitation and inhibition synaptic morphology”, Igaku Shoin Ltd., Tokyo.Google Scholar
  14. Watanabe, H., 1981, Development of axosomatic synapses of the Xenopusspinal cord with special reference to subsurface cisterns and C-type synapses, J. Comp. Neurol., 200:323–338.PubMedCrossRefGoogle Scholar
  15. Watanabe, H., and Yamamoto, T.-Y., 1981, Freeze-fracture study on three types of synapses in the Xenopus spinal cord, J. Comp. Neurol., 198:249–263.PubMedCrossRefGoogle Scholar
  16. Watanabe, H., Washioka, H., and Tonosaki, A., 1986, “Cholinergic” postsynaptic membranes of bullfrog sympathetic ganglia: Electron microscopy of thin sections and freeze-fracture replicas, Anat. Rec., 214:82–88.PubMedCrossRefGoogle Scholar
  17. Wenthold, R. J., Parakkal, M. H., Oberdorfer, M. D., and Altschuler, R. A., 1988, Glycine receptor immunoreactivity in the ventral cochlear nucleus of the guinea pig, J. Comp. Neurol., 276:423–435.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Hiroshi Watanabe
    • 1
  • Hiroshi Washioka
    • 1
  • Akira Tonosaki
    • 1
  1. 1.Dept. of AnatomyYamagata Univ. School of MedicineYamagata 990-23Japan

Personalised recommendations