Advertisement

Super-Delayed Changes of Muscarinic Acetylcholine Receptor in the Gerbil Hippocampus Following Transient Ischemia

  • N. Ogawa
  • K. Haba
  • M. Asanuma
  • K. Mizukawa
  • A. Mori
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 287)

Abstract

Cases of sequelae of cerebrovascular disease such as vascular dementia due to death of many neurons have been gradually increasing. Such neuronal death following brain ischemia has been considered to be due to energy deficiency resulting from an impaired respiratory chain. However, analysis of the delayed neuronal death showed that neuronal death is not caused by mere energy deficiency. Most studies on delayed neuronal death focused on the morphological changes and energy metabolism in the acute to subacute stage. There are few reports concerning biochemical changes in the chronic stage, especially in neurotransmitter receptors.

Keywords

Thyrotropin Release Hormone TBARS Level Muscarinic Acetylcholine Receptor Transient Ischemia Transient Cerebral Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. H., Brierley, J. B., Connor R. C. T., and Triep, C., 1966, The effects of systemic hypotension on the human brain-Clinical and neuropahological observation in 11 cases, Brain, 89:235–254.PubMedCrossRefGoogle Scholar
  2. Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N. H., 1984, Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis, J. Neurochem., 43;1369–1374.PubMedCrossRefGoogle Scholar
  3. Brierley, J. B., and Cooper, J.E., 1962, Cerebral complecation of hypotensive anesthesia in a healthy adult, J. Neurol. Neurosing Psychiat., 25;24–30.CrossRefGoogle Scholar
  4. Kirino, T., 1982, Delayed neuronal death in the gerbil hippocampus following ischemia, Brain Res., 239; 57–69.PubMedCrossRefGoogle Scholar
  5. Murphy, D. E., Schneider, J., Boehm, C., Iehmann, J., and Williams, M., 1987, Binding of [ H]3-(2-carboxypiperazin-4-yl)propyl-l-phosphonic acid to rat brain membranes: A selective, high affinity ligand for N-methyl-D-aspartate receptors, J. Pharmacol. Exp. Ther., 240;778–784.PubMedGoogle Scholar
  6. Ohkawa, H., Ohishi, N., and Yagi, K., 1976, A new sensitive assay for the measurement of hydroperoxide, Anal. Biochem., 76;184–191.CrossRefGoogle Scholar
  7. Ogawa, N., Haba, K., Yoshikawa, H., Ono, T., and Mizukawa, K., 1988, Comparison of the effects of bifemelane hydrochloride, idebenone and indeloxazine hydrochloride on ischemia-induced depletion of brain acetylcholine levels in gerbils, Res. Commun. Chem. Pathol. Pharm., 61;285–288.Google Scholar
  8. Ogawa, N., Mizuno, S., Nukina, I., Tsukamoto, S., and Mori, A., 1983, Chronic thyrotropin releasing hormone (TRH) administration on TRH receptors and muscarinic cholinergic receptors in CNS, Brain Res., 263;348–350.PubMedCrossRefGoogle Scholar
  9. Rothman, S. M., and Olney, J. W., 1986, Glutamate and the pathophysiology of hypoxic ischemic brain damage, Ann. Neurol., 19;105–111.PubMedCrossRefGoogle Scholar
  10. Suzuki, T., Yamaguchi, T., Kirino, T., Orzi, F., and Klatzo, I., 1983, The effects of 5-minutes ischemia in Mongolian gerbils I: blood-brain barrier, cerebral blood flow, and local cerebral glucose utilization changes, Acta Neuropahol., 60;207–216.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • N. Ogawa
    • 1
  • K. Haba
    • 1
  • M. Asanuma
    • 1
  • K. Mizukawa
    • 2
  • A. Mori
    • 1
  1. 1.Departemnt of Neurochemistry, Institute for NeurobiologyOkayama University Medical SchoolOkayama 700Japan
  2. 2.Department of AnatomyOkayama University Medical SchoolOkayama 700Japan

Personalised recommendations