Advertisement

The Nicotinic Acetylcholine Receptor Gene Family: Structure of Nicotinic Receptors from Muscle and Neurons and Neuronal α-Bungarotoxin-Binding Proteins

  • Jon Lindstrom
  • Ralf Schoepfer
  • William Conroy
  • Paul Whiting
  • Manoj Das
  • Mohammad Saedi
  • Rene Anand
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 287)

Abstract

Three branches of the ligand-gated ion channel gene superfamily encode proteins that bind cholinergic ligands: 1) nicotinic acetylcholine receptors (AChRs) from skeletal muscle, 2) nicotinic AChRs from neurons, and 3) α-bungarotoxin-binding proteins (αBgtBPs) from neurons. AChRs from vertebrate muscles and nerves differ in subunit composition, and in some cases in functional role, but both appear to be formed from several homologous subunits which form ACh-gated cation channels. αBgtBPs from vertebrate neurons have uncertain subunit compositions, uncertain endogenous ligands, and unknown functions. The ligand-gated ion channel gene superfamily also includes receptors for GABA and glycine, which are ligand-gated anion channels, and it probably also includes other ligand-gated ion channels (Barnard et al., 1987; Betz and Becker, 1988). The relation of glutamate receptors to this superfamily is less certain (Gregor et al., 1989; Hollmann et al., 1989; Wada et al., 1989).

Keywords

Acetylcholine Receptor Nicotinic Acetylcholine Receptor Structural Subunit Chicken Brain Neuronal Nicotinic Acetylcholine Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson, S., Y. Culver, P. Taylor, 1989, An analog of lophotoxin reacts covalently with Try190 in the α subunit of the nicotinic acetylcholine receptor. J. Biol. Chem. 2(54:1266–1267.Google Scholar
  2. Baldwin, T., C. Yoshihara, K. Blackmer, C. Kinter, and S. Burden, 1988, Regulation of acetylcholine receptor transcript expression during development in Xenopus laevis. J. Cell Biol. 105:469–478.CrossRefGoogle Scholar
  3. Ballivet M., P. Nef, S. Couturier, D. Rungger, C. Bader, D. Bertrand, and E. Cooper, 1988, Electrophysiology of a chick neuronal nicotinic acetylcholine receptor expressed in Xenopus oocytes after cDNA injection. Neuron 1:847–852.PubMedCrossRefGoogle Scholar
  4. Barnard E., M. Darlison, and P. Seeburg, 1987, Molecular biology of the GABAA receptor: The receptor/channel superfamily. Trends in Neurosci. 10:502–509.CrossRefGoogle Scholar
  5. Bellone, M., F. Tang, R. Milius, B. Conti-Tronconi, 1989, The main immunogenic region of the nicotinic acetylcholine receptor: Identification of amino acid residues interacting with different antibodies. J. Immunology 143:3568–3579.Google Scholar
  6. Betz, H., and C-M. Becker, 1988, The mammalian glycine receptor: Biology and structure of a neuronal chloride channel protein. Neurochem. Int. 13:137–146.PubMedCrossRefGoogle Scholar
  7. Betz, H., D. Graham and H. Rehm, 1981, Identification of polypeptides associated with a putative neuronal nicotinic acetylcholine receptor. J. Biol ,Chem. 257:11390–11394.Google Scholar
  8. Blount, P., and J. Merlie, 1988, Native folding of an acetylcholine receptor α subunit expressed in the absence of other receptor subunits. J. Biol. Chem. 262:4367–4376.Google Scholar
  9. Blount, P,. and J.P. Merlie, 1989, Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor. Neuron 3:349–357.PubMedCrossRefGoogle Scholar
  10. Boulter, J., J. Connolly, E. Deneris, D. Goldman, S. Heinemann, and J. Patrick, 1987, Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc. Natl. Acad. Sci. USA 84:7763–7767.PubMedCrossRefGoogle Scholar
  11. Boulter, J., K. Evans, D. Goldman, G. Martin, D. Treco, S. Heinemann, and J. Patrick, 1986, Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor α subunit. Nature 329:368–374.CrossRefGoogle Scholar
  12. Carbonetto, S., D. Fambrough, and K. Muller, 1978, Nonequivalence of α-bunga-rotoxin receptors and acetylcholine receptors in chick sympathetic neurons. Proc. Natl. Acad. Sci USA 75:1016–1020.PubMedCrossRefGoogle Scholar
  13. Changeux, J-P., J. Giraudat, and M. Dennis, 1987, The nicotinic acetylcholine receptor: Molecular architecture of a ligand-regulated ion channel. Trends in Pharmacology 8:459–465.CrossRefGoogle Scholar
  14. Cheng, T., and T. Lipton, 1989, Nicotine induces retraction of neuritis in cultured rat retinal ganglion cells. Neuroscience Society Meeting Abstract 263.6.Google Scholar
  15. Chiappinelli, V., 1985, Actions of snake venom toxins on neuronal nicotinic receptors and other neuronal receptors. Pharmac. Ther. 32:1–32.CrossRefGoogle Scholar
  16. Clark, P., G. Hamill, N. Nadi, D. Jacobowitz, and A. Pert, 1986, 3H-Nicotine and 125I-α-bungarotoxin-labeled nicotinic receptors in the interpeduncular nucleus of rats. II. Effects of habenular deafferentation. J. Comp. Neurol. 252:407–413.CrossRefGoogle Scholar
  17. Clarke, P., R. Schwartz, S. Paul, C. Pert, and A. Pert, 1985, Nicotinic binding in rat brain: Autoradiographic comparison of 3H-acetylcholine, 3H-nicotine, and 125I-α-bungarotoxin. J. Neurosci. 5:1307–1315.PubMedGoogle Scholar
  18. Claudio, T., M. Ballivet, J. Patrick, and S. Heinemann, 1983, Torpedo californica acetylcholine receptor 60,000 dalton subunit: Nucleotide sequence of cloned cDNA deduced amino acid sequence, subunit structural predictions. Proc. Natl. Acad. Sci. USA 80:1111–1115.PubMedCrossRefGoogle Scholar
  19. Claudio, T., W. Green, D. Hartman, D. Hayden, H. Paulson, F. Sigworth, S. Sine, and A. Swedlund, 1987, Genetic reconstitution of functional acetylcholine receptor channels in mouse fibroblasts. Science 238:1688–1694.PubMedCrossRefGoogle Scholar
  20. Conti-Tronconi, B., S. Dunn, E. Barnard, J. Dolly, F. Lai, N. Ray, and M. Raftery, 1985, Brain and muscle nicotinic acetylcholine receptors are different but homologous proteins. Proc. Natl. Acad. Sci. USA 82:5208–5212.PubMedCrossRefGoogle Scholar
  21. Conti-Tronconi, B., S. Tzartos, and J. Lindstrom, 1981, Monoclonal antibodies as probes of acetylcholine receptor structure: II: Binding to native receptor. Biochemistry 20:2181–2191.PubMedCrossRefGoogle Scholar
  22. Criado, M., S. Hochschwender, V. Sarin, J.L. Fox, and J. Lindstrom, 1985a, Evidence for unpredicted transmembrane domains in acetylcholine receptor subunits. Proc. Natl. Acad. Sci. USA 82:2004–2008.PubMedCrossRefGoogle Scholar
  23. Criado, M., V. Sarin, J.L. Fox, and J. Lindstrom, 1985b, Structural localization of the sequence α:235–242 of the nicotinic acetylcholine receptor. Biochem. Biophys. Res. Commun. 228:864–871.CrossRefGoogle Scholar
  24. Criado, M.,V. Sarin, J. Fox, and J. Lindstrom, 1986, Evidence that the acetylcholine binding site is not formed by the sequence αl27–143 of the acetylcholine receptor. Biochemistry 25:2839–2846.PubMedCrossRefGoogle Scholar
  25. Das, M., and J. Lindstrom, 1989, The main immunogenic region of the nicotinic acetylcholine receptor: Interaction of monoclonal antibodies with synthetic peptides. Biochem. Biophys. Res. Commun. 265:865–871.CrossRefGoogle Scholar
  26. Deneris, E.S., J. Boulter, L.W. Swanson, J. Patrick, and S. Heinemann, 1989, β3: A new member of nicotinic acetylcholine receptor gene family is expressed in brain. J. Biol. Chem. 264:6268–6272.PubMedGoogle Scholar
  27. Deneris, E., J. Connolly, J. Boulter, E. Wada, K. Wada, L. Swanson, J. Patrick, and S. Heinemann, 1988, Primary structure and expression of β 2 A novel subunit of neuronal nicotinic receptors. Neuron 2:45–54.CrossRefGoogle Scholar
  28. Dennis, M., J. Giraudat, F. Kotzyba-Hibert, M. Goeldner, C. Hirth, J-Y. Chang, C. Lazure, M. Chretien, J-P. Changeux, 1988, Amino acids of the Torpedo marmorata acetylcholine receptor α subunit labeled by a photoaffinity ligand for the acetylcholine binding site. Biochemistry 27:2346–2358.PubMedCrossRefGoogle Scholar
  29. Devillers-Thiery, A., J. Giraudat, M. Bentaboulet, and J-P. Changeux, 1983, Complete mRNA coding sequence of the acetylcholine binding α subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci. USA 80:2067–2071.PubMedCrossRefGoogle Scholar
  30. Duvoisin, R., E. Deneris, J. Patrick, S. Heinemann, 1989, The functional diversity of the neuronal nicotinic receptors is increased by a novel subunit: β4. Neuron 3:487–496.PubMedCrossRefGoogle Scholar
  31. Fujita, N., N. Nelson, T. Fox, T. Claudio, J. Lindstrom, H. Reizman, and G. Hess, 1986, Biosynthesis of the Torpedo californica acetylcholine receptor α subunit in yeast. Science 231:1284–1287.PubMedCrossRefGoogle Scholar
  32. Geysen, H., S. Rodda, T. Mason, G. Tribbick, and P. Schoofs, 1987, Strategies for epitope analysis using peptide synthesis. J. Immunol. Meth. 202:259–274.CrossRefGoogle Scholar
  33. Giraudat, J., M. Dennis, T. Heidmann, J. Chang, and J-P. Changeux, 1986, Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: Serine 262 of the δ subunit is labeled by 3H chlorpromazine. Proc. Natl. Acad. Sci. USA 83:2719–2723.PubMedCrossRefGoogle Scholar
  34. Goldman, D., D. Simmons, L. Swanson, J. Patrick, and S. Heinemann, 1986, Mapping of brain areas expressing RNA homologous to two different acetylcholine receptor α subunit cDNAs. Proc. Natl. Acad. Sci. USA 83:4076–4080.PubMedCrossRefGoogle Scholar
  35. Greenberg, M., E. Ziff, and L. Greene, 1986, Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science 234:80–83.PubMedCrossRefGoogle Scholar
  36. Gregor, P., I. Mano, I. Maoz, M. McKeown, V. Teichberg, 1989, Molecular structure of the chick cerebellar kainate-binding subunit of a putative glutamate receptor. Nature 342 689–692.PubMedCrossRefGoogle Scholar
  37. Halvorsen, S., and D. Berg, in press, Subunit composition of nicotinic acetylcholine receptors from chick ciliary ganglia: Correlation with known gene products. J. Neuroscience.Google Scholar
  38. Henley, J., J. Lindstrom, and R. Oswald, 1986, Acetylcholine receptor synthesis in retina and transport to the optic tectum in goldfish. Science 232 1627–1629.PubMedCrossRefGoogle Scholar
  39. Hollmann, M., A. O’Shea-Greenfield, S. Rogers, S. Heinemann, 1989, Cloning by functional expression of a member of the glutamate receptor family. Nature 342:643–648.PubMedCrossRefGoogle Scholar
  40. Hucho, F., and R. Hilgenfeld, 1989, The selectivity filter of a ligand-gated ion channel: The helix-M2 model of the ion channel of the nicotinic acetylcholine receptor. FEBS Lett. 257:17–23.PubMedCrossRefGoogle Scholar
  41. Imoto, K., C. Busch, B. Sakmann, M. Mishina, T. Konno, J. Nakai, H. Bujo, Y. Mori, K. Fukuda, and S. Numa, 1988, Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335:645–648.PubMedCrossRefGoogle Scholar
  42. Imoto, F., C. Methfessel, B. Sakmann, M. Mishina, Y. Mori, T. Konno, F. Fukuda, M. Kurasaki, H. Bujo, Y. Fujita, and S. Numa, 1986, Location of a δ subunit region determining ion transport through the acetylcholine receptor channel. Nature 324:670–674.PubMedCrossRefGoogle Scholar
  43. Jacob, M. and D. Berg, 1983, The ultrastrUctural localization of α-bungarotoxin binding sites in relation to synapses on chick ciliary ganglion neurons. J. Neurosci. 3:260–271.PubMedGoogle Scholar
  44. Jacob, M., D. Berg, and J. Lindstrom, 1984, A shared antigenic determinant between the Electrophorus acetylcholine receptor and a synaptic component on chick ciliary ganglion neurons. Proc. Natl. Acad. Sci. USA 52:3223–3227.CrossRefGoogle Scholar
  45. Jacob, M., J. Lindstrom, and D. Berg, 1986, Surface and intracellular distribution of a putative neuronal nicotinic acetylcholine receptor. J. Cell Biology ,103:205–214.CrossRefGoogle Scholar
  46. Jansen, K.U, W.G. Conroy, T. Claudio, T.D. Fox, N. Fujita, O. Hamill, J.M. Lindstrom, M. Luther, N. Nelson, K.A. Ryan, M.T. Sweet, and G.P. Hess, 1989, Expression of the four subunits of the Torpedo californlca nicotinic acetylcholine receptor in Saccharomyces cerevisiae. J. Biol. Chem. 264:15022–15027.PubMedGoogle Scholar
  47. Kao, P., A. Dwork, R. Kaldany, M. Silver, J. Wideman, S. Stein, and A. Karl in, 1984, Identification of the α subunit half cysteine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J. Biol. Chem. 259:11662–11665.PubMedGoogle Scholar
  48. Kao, P. and A. Karlin, 1986, Acetylcholine receptor binding site contains a disulfide crosslink between adjacent half-cystinyl residues. J. Biol. Chem. 261:8085–8088.PubMedGoogle Scholar
  49. Karlin, A., R. Cox, M. Di Paola, E. Holtzman, P. Kao, P. Label, L. Wang, and N. Yodh, 1986, Functional domains of the nicotinic acetylcholine receptor. Annals of the NY Acad, of Sci. 463 53–69.CrossRefGoogle Scholar
  50. Kehoe, J., 1979, Acetylcholine receptors in molluscan neurons. Adv. Pharmacol. Ther. 8:285–298.Google Scholar
  51. Kellaris, K., D. Ware, S. Smith, and J. Kyte, 1989, Assessment of the number of free cysteines and isolation and identification of cysteine-containing peptides from acetylcholine receptor. Biochemistry 28:3469–3482.PubMedCrossRefGoogle Scholar
  52. Kemp, G., L. Bentley, M. McNamee, and B. Morley, 1985, Purification and characterization of the α-bungarotoxin binding protein from rat brain. Brain Res. 347 274–283.PubMedCrossRefGoogle Scholar
  53. Kemp G., and B. Morley, 1986, Ganglionic nAChRs and high affinity nicotinic binding sites are not equivalent. FEBS Lett. 205:265–268.PubMedCrossRefGoogle Scholar
  54. Keyser, K.T., T.E. Hughes, P.J. Whiting, J.M. Lindstrom, and H.J. Karten, 1988, Cholinoceptive neurons in the retina of the chick: An immunohisto-chemical study of the nicotinic acetylcholine receptors. Visual Neurosci. 1:349–366.CrossRefGoogle Scholar
  55. Klausner, R., 1989, Architectural editing: Determining the fate of newly synthesized membrane proteins. The New Biologist 1:3–8.PubMedGoogle Scholar
  56. Kristan, W. and K. French, 1988, Segment-specific differences in ACh receptors in leech retzins neurons. Neuroscience Society Meeting Abstracts 69:11.Google Scholar
  57. Kubalek, E., S. Ralston, J. Lindstrom, and N. Unwin, 1987, Location of subunits within the acetylcholine receptor: Analysis of tubular crystals from Torpedo marmorata. J. Cell. Biol. 105:9–18.PubMedCrossRefGoogle Scholar
  58. Kubo, T. M. Noda, T. Takai, T. Tanabe, T. Kayano, S. Shimizu, K. Tanaka, H. Takahashi, T. Hirose, S. Inayama, R. Kikuno, T. Miyata, and S. Numa, 1985, Primary structure of δ subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence. EUR. J. Biochem. 149:5–13.PubMedCrossRefGoogle Scholar
  59. Kurosaki, T., K. Fukuda, T. Konno, Y. Mori, K. Tanaka, M. Mishina, and S. Numa, 1987, Functional properties of nicotinic acetylcholine receptor subunits expressed in various combinations. FEBS Lett. 224:253–258.CrossRefGoogle Scholar
  60. La Polla, R., K. Mayne, and N. Davidson, 1984, Isolation and characterization of a cDNA clone for the complete protein coding region of the δ subunit of the mouse acetylcholine receptor. Proc. Natl. Acad. Sci. USA 82:7970–7974.CrossRefGoogle Scholar
  61. Leprince, P., 1983, Chemical modification of the nicotinic cholinergic receptor of PC-12 nerve cell line. Biochemistry 22:5551–5556.PubMedCrossRefGoogle Scholar
  62. Lindstrom, J., M. Criado, M. Ratnam, P. Whiting, S. Ralston, J. Rivier, V. Sarin, and P. Sargent, 1987, Using monoclonal antibodies to determine the structures of acetylcholine receptors from electric organs, muscles, and neurons. Ann. N.Y. Acad. Sci. 505:208–225.PubMedCrossRefGoogle Scholar
  63. Lindstrom, J., R. Schoepfer, W.G. Conroy, P. Whiting, 1990, Structural and functional heterogeneity of nicotinic receptors. Ciba Foundation Symposium #152 ,John Wiley&Sons, New York.Google Scholar
  64. Lindstrom, J., P. Whiting, R. Schoepfer, M. Luther, and M. Das, 1989, Structure of nicotinic acetylcholine receptors from muscle and neurons. In: “Computer-Assisted Modeling of Receptor-Ligand Interactions: Theoretical Aspects and Applications”, R. Rein and A. Golombek (eds.), Alan R. Liss, New York.Google Scholar
  65. Lipton, S., E. Aizenman, and R. Loring, 1987, Neural nicotinic acetylcholine responses in solitary mammalian retinal ganglion cells. Plgers Arch. 410:37–43.CrossRefGoogle Scholar
  66. Lipton, S., M. Frosch, M. Phillips, D. Tauck, and E. Aizenman, 1988, Nicotinic antagonists enhance process outgrowth by rat retinal ganglion cells in culture. Science 239:1293–1296.PubMedCrossRefGoogle Scholar
  67. Lukas, R., 1986, Immunochemical and pharmacological distinctions between curaremimetic neurotoxin binding sites of central, autonomic, and peripheral origin. Proc. Natl. Acad. Sci. USA 53:5741–5745.CrossRefGoogle Scholar
  68. Luther, M., R. Schoepfer, P. Whiting, Y. Blatt, M.S. Montal, M. Montal, and L. Lindstrom, 1988, A muscle acetylcholine receptor is expressed in the human cerebellar medulloblastoma cell line TE671. J. Neurosci. 9:1082–1096.Google Scholar
  69. Margiotta, J., D. Berg, and V. Dionne, 1987, The properties and regulation of functional acetylcholine receptors on chick ciliary ganglion neurons. J. Neurosci. 7:3612–3622.PubMedGoogle Scholar
  70. Marks, M., and A. Collins, 1982, Characterization of nicotine binding in mouse brain and comparison with binding of α-bungarotoxin and quinuclidinly benzilate. Mol. Pharmacol 22:554–564.PubMedGoogle Scholar
  71. McAllister, R., H. Isaacs, R. Rongey, M. Peer, W. Au, S. Soukup, and M. Gardner, 1977, Establishment of a human medulloblastoma cell line. Intl. J. Cancer 20:206–212.CrossRefGoogle Scholar
  72. Merlie, J.P., and J. Lindstrom, 1983, Assembly in vivo of mouse muscle acetylcholine receptor: Identification of an α subunit species which may be an assembly intermediate. Cell 34:747-757.PubMedCrossRefGoogle Scholar
  73. Mitra, A., M. McCarthy, and R. Stroud, 1989, Three-dimensional structure of the nicotinic acetylcholine receptor and location of the major associated 43kD cytoskeletal protein, determined at 22Å by low-dose electron microscopy and x-ray diffraction to 12.5Å. J. Cell Biol. 109:755–774.CrossRefGoogle Scholar
  74. Morris, B., A. Hicks, W. Wisden, M. Darlison, S. Hunt, and E. Barnard, in press, Distinct regional expression of nicotinic acetylcholine receptor genes in chick brain. Mol. Brain Research Google Scholar
  75. Nef, P., A. Mauron, R. Stalder, C. Alliod, and M. Ballivet, 1984, Structure, linkage, and sequence of the two genes encoding the δ and ϒ subunits of the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 51:7975–7979.CrossRefGoogle Scholar
  76. Nef, P., C. Oneyser, C. Alliod, S. Couturier, and M. Ballivet, 1988, Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EMBO J.:595–601.Google Scholar
  77. Noda, M., Y. Furutani, H. Takahashi, M. Toyosato, T. Tanabe, S. Shimizu, S. Kikyotani, T. Kayano, T. Hirose, S. Inayama, and S. Numa, 1983, Cloning and sequence analysis of calf cDNA and human genomic DNA encoding α subunit precursor of muscle acetylcholine receptor. Nature 305:818–823.PubMedCrossRefGoogle Scholar
  78. Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, Y. Furutani, T. Hirose, M. Asai, S. Inayama, T. Miyata, and S. Numa, 1982, Primary structure of α subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299:793–797.PubMedCrossRefGoogle Scholar
  79. Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, S. Kikyotani, T. Hirose, M. Asai, H. Takashima, S. Inayama, T. Miyata, and S. Numa, 1983, Primary structures of β - and δ-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature 301:251–255.PubMedCrossRefGoogle Scholar
  80. Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, S. Kikyotani, Y. Furutani, T. Hirose, H. Takashima, S. Inayama, T. Miyata, and S. Numa, 1983, Struc-tural homology of Torpedo californica acetylcholine receptor subunits. Nature 302:528–532.PubMedCrossRefGoogle Scholar
  81. Norman, R., F. Mehraban, E. Barnard, and 0. Dolly, 1982, Nicotinic acetylcholine receptor from chick optic lobe. Proc. Natl. Acad. Sci. USA 79:1321–1325.PubMedCrossRefGoogle Scholar
  82. Oiki, S., W. Danho, K. Madison, and M. Montal, 1988, M20, a candidate for the structure lining the ionic channel of the nicotinic cholinergic receptor. Proc. Natl. Acad. Sci. USA 85:8703–8707.PubMedCrossRefGoogle Scholar
  83. Papke, R., J. Boulter, J. Patrick, and S. Heinemann, 1989, Single-channel currents of rat neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. Neuron 3:589–596.PubMedCrossRefGoogle Scholar
  84. Patrick, J., and M. Stallcup, 1977, α-Bungarotoxin binding and cholinergic receptor function on a rat sympathetic nerve line. J. Biol. Chem. 252:8629–8633.PubMedGoogle Scholar
  85. Pedersen, S., P. Bridgman, S. Sharp, J. Cohen, 1990, Identification of a cytoplasmic region of the Torpedo nicotinic acetylcholine receptor α subunit by epitope mapping. J. Biol. Chem. 265:569–581.PubMedGoogle Scholar
  86. Quik, R., R. Afar, T. Audhya, and G. Goldstein, 1989, Thymopoietin, a thymic polypeptide, specifically interacts at neuronal nicotinic α-bungarotoxin receptors. J. Neurochem. 53:1320–1323.PubMedCrossRefGoogle Scholar
  87. Raftery, M., M. Hunkapillar, C. Strader, and L. Hood, 1980, Acetylcholine receptor: Complex of homologous subunits. Science 208:1454–1457.PubMedCrossRefGoogle Scholar
  88. Rapier, C., G. Lunt, and S. Wonnacott, 1988, Stereoselective nicotine-induced release of dopamine from striatal synaptosomes: Concentration dependence and repetitive stimulation. J. Neurochem. 50:1123–1130.PubMedCrossRefGoogle Scholar
  89. Ratnam, M. and J. Lindstrom, 1984, Structural features of the nicotinic acetylcholine receptor revealed by antibodies to synthetic peptides. Biochem. Biophys. Res. Commun. 222:1225–1233.CrossRefGoogle Scholar
  90. Ratnam, M., P.B. Sargent, V. Sarin, J.L. Fox, D. Le Nguyen, J. Rivier, M. Criado, and J. Lindstrom, 1986a, Location of antigenic determinants on primary sequences of subunits of nicotinic acetylcholine receptor by peptide mapping. Biochemistry 25:2621–2632.PubMedCrossRefGoogle Scholar
  91. Ratnam, M. D. Le Nguyen, J. Rivier, P.B. Sargent, and J. Lindstrom, 1986b, Transmembrane topography of nicotinic acetylcholine receptor: Immunochemical tests contradict theoretical predictions based on hydrophobicity profiles. Biochemistry 25:2633–2643.PubMedCrossRefGoogle Scholar
  92. Sargent, P., B. Hedges, L. Tsavaler, L. Clemmons, S. Tzartos, and J. Lindstrom, 1983, The structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscles revealed by crossreacting monoclonal antibodies. J. Cell Biol. 95:609–618.Google Scholar
  93. Sargent, P.B., S.H. Pike, S.B. Nadel, and J.M. Lindstrom, 1989, Nicotinic acetylcholine receptor-like molecules in the retina, retinotectal pathway, and optic tectum of the frog. J. Neurosci. 9:565–573.PubMedGoogle Scholar
  94. Schneider, M., C. Adee, H. Betz, and J. Schmidt, 1985, Biochemical characterization of two nicotinic receptors from the optic lobe of the chick. J. Biol. Chem. 260:14505–14512.PubMedGoogle Scholar
  95. Schoepfer, R. W.G. Conroy, P. Whiting, M. Gore, and L. Lindstrom, submitted, cDNA clones define brain α-bungarotoxin-binding proteins as members of the ligand-gated ion channel family.Google Scholar
  96. Schoepfer, R., S. Halvorsen, W.G. Conroy, P. Whiting, and J. Lindstrom, 1989, Antisera against an α-3 fusion protein bind to ganglionic but not to brain nicotinic acetylcholine receptors. FEBS Lett. 257:393–399.PubMedCrossRefGoogle Scholar
  97. Schoepfer, R., M. Luther, and J. Lindstrom, 1988a, The human medulloblastoma cell line TE671 expresses a muscle-like acetylcholine receptor: Cloning of the α subunit cDNA. FEBS Lett. 226:235–240.PubMedCrossRefGoogle Scholar
  98. Schoepfer, R. P. Whiting, F. Esch, R. Blacher, S. Shimasaki, and J. Lindstrom, 1988b, cDNA clone coding for the structural subunit of a chicken brain nicotinic acetylcholine receptor. Neuron 1:241–248.PubMedCrossRefGoogle Scholar
  99. Sine, S., 1988, Functional properties of human skeletal muscle acetylcholine receptors expressed by the TE671 cell line. J. Biol. Chem. 263:18052–18062.PubMedGoogle Scholar
  100. Smith, M., J. Margiotta, A. Franco, J. Lindstrom, and D. Berg, 1986, Cholinergic modulation of an acetylcholine receptor-like antigen on the surface of chick ciliary ganglion neurons in cell culture. J. Neurosci. 6:946–953.PubMedGoogle Scholar
  101. Smith, M., J. Stollberg, J. Lindstrom, and D.K. Berg, 1985, Characterization of a component in chick ciliary ganglia that cross-reacts with monoclonal antibodies to muscle and electric organ acetylcholine receptor. J. Neurosci. 5:2726–2731.PubMedGoogle Scholar
  102. Souroujon, M., D. Neumann, S. Pizzighella, A. Safran, and S. Fuchs, 1986, Localization of a highly immunogenic region on the acetylcholine receptor α subunit. Biochem. Biophys. Res. Commun. 135:82–89.PubMedCrossRefGoogle Scholar
  103. Steinbach, J., and C. Ifune, 1989, How many kinds of nicotinic acetylcholine receptor are there? TINS 12:3–6.PubMedGoogle Scholar
  104. Stratton, M., B. Reeves, and C. Cooper, 1989, “Scientific Correspondence”, Nature 337:311–312.PubMedCrossRefGoogle Scholar
  105. Stroud, R.M. and J. Finer-Moore, 1985, Acetylcholine receptor structure, function, and evolution. Ann. Rev. Cell Biol. 1:317–351.PubMedCrossRefGoogle Scholar
  106. Sumikawa, K., and R. Miledi, 1989, Assembly and N-glycosylation of all ACh receptor subunits are required for their efficient insertion into plasma membranes. Mol. Brain Res. 5:183–192.PubMedCrossRefGoogle Scholar
  107. Swanson, L., J. Lindstrom, S. Tzartos, L. Schmued, D. O’Leary, and W. Cowan, 1983, Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in the midbrain of the chick. Proc. Natl. Acad. Sci. USA 80:4532–4536.PubMedCrossRefGoogle Scholar
  108. Swanson, L., D. Simmons, P. Whiting, and J. Lindstrom, 1987, Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system. J. Neurosci. 7:3334–3342.PubMedGoogle Scholar
  109. Tobimatsu, T., Y. Fujita, K. Fukuda, K. Tanaka, Y. Mori, T. Konno, M. Mishina, and S. Numa, 1987, Effects of substitution of putative transmembrane segments on nicotinic acetylcholine receptor function. FEBS Lett. 222:56–62.PubMedCrossRefGoogle Scholar
  110. Toyoshima, C. and N. Uniwn, 1988, Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes. Nature 336:247–250.PubMedCrossRefGoogle Scholar
  111. Tzartos, S. and J. Lindstrom, 1980, Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits. Proc. Natl. Acad. Sci. USA 77:755–759.PubMedCrossRefGoogle Scholar
  112. Tzartos, S. S. Hochschwender, L. Langeberg, and J. Lindstrom, 1983, Demonstration of a main immunogenic region on acetylcholine receptors from human muscle using monoclonal antibodies to human receptor. FEBS Lett. 158:116-118.PubMedCrossRefGoogle Scholar
  113. Tzartos, S., S. Hochschwender, P. Vasquez, and J. Lindstrom, 1987, Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor. J. Neuroimmunol. 15:185–194.PubMedCrossRefGoogle Scholar
  114. Tzartos, S., A. Kokla, S. Walgrave, and B. Conti-Tronconi, 1988, The main immunogenic region of human muscle acetylcholine receptor is localized within residues 63–80 of the α subunit. Proc. Natl. Acad. Sci. USA 55:2899–2903.CrossRefGoogle Scholar
  115. Tzartos, S., L. Langeberg, S. Hochschwender, L. Swanson, and J. Lindstrom, 1986, Characteristics of monoclonal antibodies to denatured Torpedo and to native calf acetylcholine receptors: species, subunit, and region specificity. J. Neuroimmunol. 10:235–253.PubMedCrossRefGoogle Scholar
  116. Tzartos, R. H. Loutrari, F. Tang, A. Kokla, S. Walgrave, R. Milius, Conti-Tronconi, B., 1990, Main immunogenic region of Torpedo electroplax and human muscle acetylcholine receptor: Localization and microheterogeneity revealed by the use of synthetic peptides. J. Neurochemistry 54:51–61.CrossRefGoogle Scholar
  117. Tzartos, S., D. Rand, B. Einarson, and J. Lindstrom, 1981, Mapping of surface structures on Electrophorus acetylcholine receptor using monoclonal antibodies. J. Biol. Chem. 256:8635–8645.PubMedGoogle Scholar
  118. Tzartos, S. M. Seybond, and J. Lindstrom (1982) Specificity of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies. Proc. Natl. Acad. Sci. USA 79:188–192.PubMedCrossRefGoogle Scholar
  119. Unwin, N., 1989, The structure of ion channels in membranes of excitable cells. Neuron 3:665–675.PubMedCrossRefGoogle Scholar
  120. Utkin, Y., E. Lazakovich, E.I. Kasheverov, and V. Tsetlin, 1989, α-Bungarotoxin interacts with the rat brain tchykinin receptors. FEBS Lett. 255:111–115.PubMedCrossRefGoogle Scholar
  121. Wada, K., M. Ballivet, J. Boulter, J. Connolly, E. Wada, E. Deneris, L. Swan-son, S. Heinemann, and J. Patrick, 1988, Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science 240:330–334.PubMedCrossRefGoogle Scholar
  122. Wada, K. C. Dechesne, S. Shimasaki, R. King, K. Kusano, C. Banner, R. Went-hold, Y. Nakatani, 1989, Sequence and expression of a frog brain complementary DNA encoding a kainate-binding protein. Nature 342:684–689.PubMedCrossRefGoogle Scholar
  123. Wada, E., K. Wada, J. Boulter, E. Deneris, S. Heinemann, J. Patrick, and L. Swanson, 1989, The distribution of α2, α3, α4 and β 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: A hybridization histochemical study in the rat. J. Comp. Neurol. 284:314–335.PubMedCrossRefGoogle Scholar
  124. Wang, G., S. Molinaro, and J. Schmidt, 1978, Ligand responses of α-bungaro-toxin-binding sites from skeletal muscle and optic lobe of the chick. J. Biol. Chem. 253:8507–8512.PubMedGoogle Scholar
  125. Watson, J., E. Adkins-Regan, P. Whiting, J.M. Lindstrom, and T. Podleski, 1988, Autoradiographic localization of nicotinic acetylcholine receptors in the brain of the zebra finch (Poephila guttata). J. Comp. Neurol. 275:255–264.CrossRefGoogle Scholar
  126. Whiting, P.J. and J.M. Lindstrom, 1986a, Purification and characterization of a nicotinic acetylcholine receptor from chick brain. Biochemistry ,25:2082–2093.PubMedCrossRefGoogle Scholar
  127. Whiting, P. and J. Lindstrom, 1986b, Pharmacological properties of immunoiso-lated neuronal nicotinic receptors. J. Neurosci. 6:3061–3069.PubMedGoogle Scholar
  128. Whiting, P.J., and J.M. Lindstrom 1987a, Purification and characterization of a nicotinic from rat brain. Proc. Natl. Acad. Sci. USA 84:595–599.PubMedCrossRefGoogle Scholar
  129. Whiting, P. and J. Lindstrom, 1987b, Affinity labeling of neuronal acetylcholine receptors localizes the neurotransmitter binding site to the β subunit. FEBS Lett. 213:55–60.PubMedCrossRefGoogle Scholar
  130. Whiting, P.J. and J.M. Lindstrom, 1988, Characterization of bovine an human neuronal nicotinic acetylcholine receptors using monoclonal antibodies. J. Neurosci. 8:3395–3404.PubMedGoogle Scholar
  131. Whiting, P. R. Liu, B.J. Morley, and J. Lindstrom, 1987a, Structurally different neuronal nicotinic acetylcholine receptor subtypes purified and characterized using monoclonal antibodies. J. Neurosci. 7:4005–4016.PubMedGoogle Scholar
  132. Whiting, P. F. Esch, S. Shimasaki, and J. Lindstrom, 1987b, Neuronal nicotinic acetylcholine receptor β subunit is coded for by the cDNA clone 04. FEBS Lett. 219:459–463.PubMedCrossRefGoogle Scholar
  133. Whiting, P. R. Schoepfer., W.G. Conroy, M.V. Gore, K. Keyser, S. Shimasaki, F. Esch, and J. Lindstrom, submitted, Differential expression of nicotinic acetylcholine receptor subtypes in brain and retina.Google Scholar
  134. Witzemann, V., B. Barg, Y. Nishikawa, B. Sakmann, and S. Numa, 1987, Differential regulation of muscle acetylcholine receptor ϒand є subunit mRNAs. FEBS Lett. 223:104–112.PubMedCrossRefGoogle Scholar
  135. Wong, L., and J. Gallagher, 1989, A direct nicotinic receptor-mediated inhibition recorded intracellularly in vitro. Nature 341:439–442.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Jon Lindstrom
    • 1
  • Ralf Schoepfer
    • 1
  • William Conroy
    • 1
  • Paul Whiting
    • 1
  • Manoj Das
    • 1
  • Mohammad Saedi
    • 1
  • Rene Anand
    • 1
  1. 1.The Salk Institute for Biological StudiesSan DiegoUSA

Personalised recommendations