Depression of NMDA-Evoked Acetylcholine Release by Endogenous Adenosine in Striatum Slices

  • Elena Porsche
  • Thomas Schwan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 287)


The mechanisms of NMDA-evoked transmitter release are still not clear. We demonstrate for the first time that NMDA-evoked acetylcholine release is depressed by endogenous liberated adenosine in functionally-hypoxic and non-hypoxic brain slices. Adenosine deaminase potentiates the release of 3H-acetylcholine from rat striatum slices in response to N-Methyl-D-Aspartate (NMDA) stimulation, whereas (-)-R-phenylisopropyl-adenosine (R-PIA) decreases the NMDA-evoked transmitter release. The NMDA-evoked transmitter release is potentiated by 8-cyclopentyl-l,3-dipropylxanthine (DPCPX) only in adenosine depleted slices. The increase of extraneuronal adenosine by dipyridamole also depresses the presynaptic transmitter release.

Our results indicate: (i) that stimulation of NMDA-receptors induces a complex neuronal response, e.g., release of acetylcholine and release of adenosine, (ii) that adenosine induces an agonist high affinity conformation of the A1-receptors which apparently are insensitive to an A1 -adenosine receptor-antagonist (DPCPX) and (iii) that brain slices 0.5 mm thick can serve as an experimental model for testing antihypoxic substances.


Adenosine Receptor Adenosine Deaminase Transmitter Release Thick Slice Ibotenic Acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrington, W. W., Jacobson, K. A., and Stiles, G. L., 1989, Demonstration of distinct agonist and antagonist conformation of A -adenosine receptor, J. Biol. Chem., 264:13157–13164.PubMedGoogle Scholar
  2. Fink, K., Göthert, M., Molderings, G., and Schlicker, E., 1989, N-methyl-D-aspartate (NMDA) receptor-mediated stimulation of noradrenaline release, but not release of other neurotransmitters, in the rat brain cortex: receptor location, characterization and desensitization, Naunyn-Schmiedeberg’s Arch. Pharmacol., 339:514–521.CrossRefGoogle Scholar
  3. Fredholm, B. B., Fastbom, J., Duner-Engstrom, M., Hu P.-Sch., van der Ploeg, I., and Dunwiddie, T. V., 1989, Mechanism(s) of inhibition of transmitter release by adenosine receptor activation, in: “Adenosine receptors in the nervous system,” J. A. Ribeiro, ed., Taylor & Francis, London, New York, Philadelphia, 123–131.Google Scholar
  4. Haas, H. L., and Greene, R. W., 1988, Endogenous adenosine inhibits hippocampal CA neurones: further evidence from extra-and intracellular recording, Naunyn-Schmiedeberg’s Arch. Pharmacol., 337:561–565.CrossRefGoogle Scholar
  5. Hoehn, K., and White, T., 1990, Role for excitatory amino acid receptors in K+ -and glutamate-evoked release of endogenous adenosine from rat cortical slices, J. Neurochem., 54:256–265.PubMedCrossRefGoogle Scholar
  6. Jackisch, R., Strittmatter, H., Kasakow, L., and Hertting, G., 1984, Endogenous adenosine as a modulator of hippocampal acetylcholine release, Naunyn-Schmiedeberg’s Arch. Pharmacol., 327:319–325.CrossRefGoogle Scholar
  7. Limberger, N., Späth, L., and Starke, K., 1988, Presynaptic a -adrenoceptor, opioid K-receptor and adenosine A -receptor interactions on noradrenaline release in rabbit brain cortex, Naunyn-Schmiedeberg ’s Arch. Pharmacol., 338:53–61.Google Scholar
  8. Porsche-Wiebking, E., 1989, New N-Methyl-D-Aspartate antagonists for the treatment of stroke, Drug Develop. Res., 17:367–375.CrossRefGoogle Scholar
  9. Phillis, J. W., and Wu, P. H., 1981, The role of adenosine and its nucleotides in central synaptic transmission, Prog. Neurobiol., 16:187–239.PubMedCrossRefGoogle Scholar
  10. Reddington, M., Lee, K. S., and Schubert, P., 1982, An A -receptor characterised by (3H)-cyclohexyladenosine binding, mediates the depression of evoked potentials in a rat hippocampus slice preparation, Neurosci. Lett., 28:275–279.PubMedCrossRefGoogle Scholar
  11. Rothmann, S. M., and Olney, J., 1987, Excitotoxicity and the NMDA receptor, Trends Neurol. Sci., 10:299–302.CrossRefGoogle Scholar
  12. Schubert, P., 1988, Modulation of synaptically evoked neuronal caclium fluxes by adenosine, in: “Neurotransmitters and cortical frunction. From molecules to mind,” M. Avoli, T. A. Reader, R. W. Dykes, and P, Gloor, eds., Plenum Press, New York, 471–483.CrossRefGoogle Scholar
  13. Stone, T. W., and Bartrup, J. T., 1989, Magnesium-dependency of presynaptic inhibition by adenosine, in: “Adenosine receptors in the nervous system,” J. A. Ribeiro, ed., Taylor & Francis, London, New York, Philadelphia, 87–95.Google Scholar
  14. Wichman, T., Wictorin, K., Björklund, A., and Starke, K., 1988, Release of acetylcholine and its dopaminergic control in slices from striatal grafts in the ibotenic acid lesioned rat striatum, Naunyn-Schmiedeberg’s Arch. Pharmacol., 338:623–631.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Elena Porsche
    • 1
  • Thomas Schwan
    • 1
  1. 1.Werk Kalle-AlbertHoechst AGWiesbadenGermany

Personalised recommendations