Advertisement

Serotonin Receptor Subtypes in Brain: Ligand Binding Properties and Coupling with G Proteins

  • Yasuyuki Nomura
  • Yoshihisa Kitamura
  • Michihisa Tohda
  • Shin-ichi Imai
  • Toshiaki Katada
  • Michio Ui
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 287)

Abstract

Serotonin (5-hydroxytryptamine; 5-HT) receptors are classified as 5-HT1, 5-HT2 and 5-HT3, and evidence is emerging to suggest heterogeneity within 5-HT1 receptor category, e.g., 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D receptors (Peroutka, 1988). Several GTP-binding proteins (G proteins) in mammalian brain were identified, e.g., α52/45, α41, α40, α39 (α-subunits of Gs, Gi1, Gi2 and Go) (Katada et al., 1986a; Katada et al., 1987; Itoh et al., 1988; Casey and Gliman, 1988) and several G proteins with low molecular weight (20 ~ 30 kDa), including 24-kDa G protein (24 K-G) (Katada and Ui, 1988), ADP-ribosylation factor (ARF) (Kahn and Gliman, 1986), a substrate of botulinum toxin (Gb, rho product) (Narumiya et al., 1988) and other small molecular G proteins (smg) (Takai et al., 1989). N-ethylmaleimide (NEM) has been used as a useful probe to alkylate sulfhydryl residues in receptors and G proteins involved in their coupling (Katada et al., 1986b; Kitamura and Nomura, 1987; Nomura et al., 1988). To classify 5-HT receptor subtypes in the CNS from binding characteristics and the aspect of coupling properties of these receptors with G proteins, we here examined the effects of GTPyS, NEM and several 5-HT receptor ligands on specific binding of [3H]8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (5-HT1A), [125I]iodocyanopindolol (ICYP) (5-HT1B), [ 3H]mesulergine (5-HT1C), [3H] 4-bromo-2,5-dimethoxyphenyliso-propylamine (DOB) (5-HT2) and [3H]ketanserin (5-HT2) to crude synaptic membranes of rat brain.

Keywords

Pertussis Toxin Brain Membrane Competition Curve Guanine Nucleotide Regulatory Protein Receptor Clone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berstein, G., Haga, K., Haga, T., and Ichiyama, A., 1988, Agonist and antagonist binding of muscarinic acetylcholine receptors purified from porcine brain: interconversion of high-and low-affinity sites by sulfhydryl reagents, J. Neurochem. 50:1687–1694.PubMedCrossRefGoogle Scholar
  2. Bouhelal, R., Smounya, L., and Bockaert, J., 1988, 5-HT1B receptors are negatively coupled with adenylate cyclase in rat substantia nigra, Eur. J. Pharmacol., 151:189–196.PubMedCrossRefGoogle Scholar
  3. Bunzow, J. R., Van Tol, H. H. M., Grandy, D. K., Albert, P.,Salon, J., Christie, M., Machida, C. A., Neve, K. M., and Civelli O.,, 1988, Cloning and expression of a rat D2 dopamine receptor cDNA, Nature 336:783–787.PubMedCrossRefGoogle Scholar
  4. Casey, P. J., and Gilman, A. G., 1988, G protein involvement in receptor-effector coupling, J. Biol. Chem., 263:2577–2580.PubMedGoogle Scholar
  5. Cheng, Y. C., and Prusoff, W. H., 1973, Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction, Biochem. Pharmacol., 22:3099–3108.PubMedCrossRefGoogle Scholar
  6. Conn, P. J., and Sanders-Bush, E., 1985, Serotonin-stimulated phospho-inositide turnover; mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions, J. Pharmacol. Exp. Ther., 234:195–203.PubMedGoogle Scholar
  7. Conn, P. J., Sanders-Bush, E., Hoffman, B. J., and P. R. Hartig, P. R., 1986, A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover, Proc. Natl. Acad. Sci. USA 83:4086– 4088.PubMedCrossRefGoogle Scholar
  8. Cotecchia, S., Schwinn, D. A., Randall, R. R., Lefkowitz, R. J., Caron, M. G., and Kobilka, B. K., 1988, Molecular cloning and expression of the cDNA for the hamster α1-adrenergic receptor, Proc. Natl. Acad. Sci. USA, 85:7159–7163.PubMedCrossRefGoogle Scholar
  9. Dixon, R. A. F., Sigal, I. S., Candelore, M. R., Register, R. B., Scattergcod, W., Rands, E., and Strader, C. D., 1987, Structural features required for ligand binding to the β-adrenergic receptor, EMBO J., 6:3269–3275.PubMedGoogle Scholar
  10. Fargin, A., Raymond, J. R., Lohse, M. J., Kobilka, B. K., Caron, M. G., and Lefkowitz, R. J., 1988, The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HTlA receptor, Nature, 335:358–360.PubMedCrossRefGoogle Scholar
  11. Hartig, P. R., 1989, Molecular biology of 5-HT receptors, Trends Pharmacol. Sci., 10:64–69.PubMedCrossRefGoogle Scholar
  12. Hoyer, D., Engel G., and Kalkman, H. O., 1985, Characterization of the 5-HT1B recognition site in rat brain: binding studies with (-)-[125I]iodocyanopindolol, Eur. J. Pharmacol., 118:1–12.PubMedCrossRefGoogle Scholar
  13. Hoyer, D., 1988, Molecular pharmacology and biology of 5-HT1c receptors, Trends Pharmacol. Sci. 9:89–94.PubMedCrossRefGoogle Scholar
  14. Hoyer, D., and Schoeffter, P., 1988, 5-HT-1D receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in calf substantia nigra, Eur. J. Pharmacol., 147:145–147.PubMedCrossRefGoogle Scholar
  15. Imai, S., Kitamura, Y., and Nomura, Y., 1988, Effects of N-ethylmaleimide on the coupling of 5-HT receptor subtypes with GTP-binding protein in rat brain, Bulletin of Japanese Neurochemical Society, 27:132– 133 (in Japanese).Google Scholar
  16. Imai, S., Kitamura, Y., and Nomura, Y., 1989, Classification of 5-hydroxytryptamine receptor subtypes from binding characteristics in rat brain membranes, Bulletin of Japanese Neurochemica1 Society, 28:184–185 (in Japanese).Google Scholar
  17. Itoh, H., Katada, T., Ui, M., Kawasaki, H., Suzuki, K., and Kaziro, Y., 1988, Identification of three pertussis toxin substrates (41, 40 and 39 kDa proteins) in mammalian brain, FEBS Lett., 230:85–89.PubMedCrossRefGoogle Scholar
  18. Julius, D., MacDermott, A. B., Axel, R., and Jessell, T. M., 1988, Molecular characterization of a functional cDNA encoding the serotonin 1c receptor, Science, 241:558–564.PubMedCrossRefGoogle Scholar
  19. Kahn, R. A., and Gilman, A. G., 1986, The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein, J. Biol. Ghem., 261:7906–7911.Google Scholar
  20. Katada, T., Oinuma, M., and Ui, M., 1986a, Two guanine nucleotide-binding proteins in rat brain serving as the specific substrate of islet-activating protein, pertussis toxin: interaction of the α-subunits with βγ-subunits in development of their biological activities, J. Biol. Chem., 261:8182–8191.PubMedGoogle Scholar
  21. Katada, T., Kurose, H., Oinuma, M., Hoshino, S., Shinoda, M., Amanuma, S., and Ui, M., 1986b, Role of GTP-binding proteins in coupling of receptors and adenylate cyclase, in: “Gunma Symposia on Endocrinology, Vol. 23”, VNU Science Press BV, Tokyo, p.45–67.Google Scholar
  22. Katada, T., Oinuma, M., Kusakabe, K., and Ui, M., 1987, A new GTP-binding protein in brain tissues serving as the specific substrate of islet-activating protein, pertussis toxin, FEBS Lett., 213:353–358.PubMedCrossRefGoogle Scholar
  23. Katada, T., and Ui, M., 1988, Unique properties of a new GTP-binding protein with a molecular mass of 24,000 daltons purified from porcine brain membranes, in: “Cold Spring Harbor Symposia on Quantitative Biology, Vol. 53; Molecular Biology of Signal Transduction”, Cold Spring Harbor Laboratory, New York, p.255–261.Google Scholar
  24. Kitamura, Y., and Nomura, Y., 1987, Uncoupling of rat cerebral cortical α2-adrenoceptors from GTP-binding proteins by N-ethylmaleimide, J. Neurochem., 49:1894–1901.PubMedCrossRefGoogle Scholar
  25. Kitamura, Y., Imai, S., and Nomura, Y., 1988, Coupling of 5-HT1A receptor with GTP-binding protein in rat brain membranes, Japan. J. Pharmacol., 46:251P.Google Scholar
  26. Kobilka, B. K., Matsui, H., Kobilka, T. S., Yang-Feng, T. L., Francke, U., Caron, M. G., Lefkowitz, R. J., and Regan, J. W., 1987a, Cloning, sequencing, and expression of the gene coding for the human platelet α2-adrenergic receptor, Science, 238:650–656.PubMedCrossRefGoogle Scholar
  27. Kobilka, B. K., Frielle, T., Collins, S., Yang-Feng, T., Kobilka, T. S., Francke, U., Lefkowitz, R. J., and Caron, M. G., 1987b, An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins, Nature, 329:75–79.PubMedCrossRefGoogle Scholar
  28. Kobilka, B. K., Kobilka, T. S., Daniel, K., Regan, J. W., Caron, M. G., and Lefkowitz, R. J., 1988, Chimeric α2-, β2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity, Science, 240:1310–1316.PubMedCrossRefGoogle Scholar
  29. Lefkowitz, R. J., and Caron, M. G., 1988, Adrenergic receptors: models for the study of receptors coupled to guanine nucleotide regulatory proteins, J. Biol. Chem., 263:4993–4996.PubMedGoogle Scholar
  30. Lyon, R. A., Davis, K. H., and Titeler M., 1987, 3H-DOB (4-bramo-2,5-dimethoxyphenylisopropylamine) labels a guanyl nucleotide-sensitive state of cortical 5-HT2 receptors, Mol. Pharmacol., 31:194–199.PubMedGoogle Scholar
  31. Munson, P. J., and Rodbard D., 1980, LIGAND: a versatile computerized approach for characterization of ligand-binding systems, Anal. Biochem., 107:220–239.PubMedCrossRefGoogle Scholar
  32. Narumiya, S., Sekine, A., and Fujiwara, M., 1988, Substrate for botulinum ADP-ribosyltransferase, Gb, has an amino acid sequence homologous to a putative rho gene product, J. Biol. Chem. 263:17255–17257.PubMedGoogle Scholar
  33. Nomura, Y., Kaneko, S., Kato, K., Yamagishi, S., and Sugiyama, H., 1987, Inositol phosphate formation and chloride current responses induced by acetylcholine and serotonin through GTP-binding proteins in Xenopus oocyte after injection of rat brain messenger RNA, Mol. Brain Res., 2:113–123.CrossRefGoogle Scholar
  34. Nomura Y., Kitamura, Y., and Kawata, K., 1988, Function and mechanism of the interaction of GTP-binding proteins with α2-adrenoceptors in the brain, in: “Neurotransmitters and Signal Transduction,” Plenum, New York, p.301–311.Google Scholar
  35. Nukada, T., Haga, T., and Ichiyama, A., 1983, Muscarinic receptors in porcine caudate nucleus: II. different effects of N-ethylmaleimide on [3H]cis-methyldioxolane binding to heat-labile (guanyl nucleotide-sensitive) sites and Heat-stable (guanyl nucleotide-insensitive) sites, Mol. Pharmacol. 24:374–379.PubMedGoogle Scholar
  36. Offord, S. J., Ordway, G. A., and Frazer, A., 1988, Application of [125 I]-iodocyanopindolol to measure 5-hydroxytryptamine1B receptors in the brain of the rat, J. Pharmacol. Exp. Ther., 244:144–153.PubMedGoogle Scholar
  37. Okada, F., Tokumitsu, Y., and Nomura, Y., 1989, Pertussis toxin attenuates 5-hydroxytryptamine1A receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in rat hippocampal membranes, J. Neurochem., 52:1566–1569.PubMedCrossRefGoogle Scholar
  38. Pazos, A., Hoyer D., and Palacios, J. M., 1984, The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new type of serotonin recognition site, Eur. J. Pharmacol., 106:539–546.PubMedCrossRefGoogle Scholar
  39. Pedigo, N. W., Yamamura, H. I., and Nelson, D. L., 1981, Discrimination of multiple [ 3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain, J. Neurochem., 36:220–226.PubMedCrossRefGoogle Scholar
  40. Peroutka, S. J., and Snyder, S. H., 1979, Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol, Mol. Pharmacol., 16:687–699.PubMedGoogle Scholar
  41. Peroutka, S. J., 1988, 5-Hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization, Trends Neurosci., 11:496–500.PubMedCrossRefGoogle Scholar
  42. Pritchett, D. B., Bach, A. W., Wozny, M., Taleb, O., Toso, R. D., Shih, J. C., and Seeburg, P. H., 1988, Structure and functional expression of cloned rat serotonin 5-HT-2 receptor, EMBO J., 7:4135–4140.PubMedGoogle Scholar
  43. Stratford, C. A., Tan, G. L., Hamblin, M. W., and Ciaranello, R. D., 1988, Differential inactivation and G protein reconstitution of subtypes of [3H]5-hydroxytryptamine binding sites in brain, Mol. Pharmacol., 34:527–536.PubMedGoogle Scholar
  44. Takai, Y., Kikuchi, A., Yamashita, T., Yamamoto, K., Kawata, M., and Hoshijima, M., 1989, Small molecular weight GTP-binding proteins from bovine brain membranes: purification, characterization and possible functions, in: “Physiology and Pharmacology of Transmembrane Signalling,” Elsevier, Amsterdam, p.77–86.Google Scholar
  45. Watling, K. J., 1988, Radioligand binding studies identify 5-HT3 recognition sites in neuroblastoma cell lines and mammalian CNS, Trends Pharmacol. Sci., 9:227–229.PubMedCrossRefGoogle Scholar
  46. Yamaoka, K., Tanigawara, Y., Nakagawa, T., and Uno, T., 1981, A pharmacokinetic analysis program (MULTI) for microcomputer, J. Pharm. Dyn., 4:879–885.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Yasuyuki Nomura
    • 1
  • Yoshihisa Kitamura
    • 1
  • Michihisa Tohda
    • 1
  • Shin-ichi Imai
    • 1
  • Toshiaki Katada
    • 2
  • Michio Ui
    • 3
  1. 1.Department of Pharmacology, Faculty of Pharmaceutical SciencesHokkaido UniversitySapporo 060Japan
  2. 2.Department of Life Science, Faculty of ScienceTokyo Institute of TechnologyYokohama 227Japan
  3. 3.Department of Physiological Chemistry, Faculty of Pharmaceutical SciencesTokyo UniversityTokyo 113Japan

Personalised recommendations