Skip to main content

Effects of Oxygen Depletion on Phosphoinositide Breakdown in Rat Brain Slices

  • Chapter
Neuroreceptor Mechanisms in Brain

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 287))

  • 130 Accesses

Abstract

Electrophysiological studies indicate that hypoxia exerts dual effects on neuronal excitability. The first effect of hypoxia is supression of excitability during hypoxia period which would lead to the impared synaptic transmission during hypoxia (Gorman, 1966; Dolivo, 1974; Hansen et al., 1982), and the second effect is an enhancement of the excitability after hypoxic period (Shiff and Balestrino, 1985; Shiff and Somjen, 1984, 1985, 1987). Biochemical studies have clearly established that hypoxia disrupts the biosynthesis of various neurotransmitters, including acetylcholine (Gibson and Duffy, 1981; Gibson et al., 1981) or catecholamines (Davis and Carlsson, 1973; Miwa et al., 1986). The first effect of hypoxia, viz., supression of excitability, may be readily explained by decreased neurotransmitter synthesis in the presynaptic terminals, but the cellular and molecular mechanisms underlying the posthypoxic hyperexcitability remain unclear. PI breakdown is an ubiquitous intracellular signal transduction system in the brain, and our initial motivation to start this study was to examine whether any alterations in PI metabolism would play a role in changes in neuronal excitability caused by hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bosley T. M., Woodhams P. L., Gordon R. D., and Balazs R. (1983) Effects of anoxia on the stimulated release of amino acid neurotransmitters in the cerebellum in vitro. J. Neurochem., 40, 189–201.

    Article  PubMed  CAS  Google Scholar 

  • Brown E. D., Kendall D. A., and Nahorski S. R. (1984) Inositol phospholipid hydrolysis in rat cerebral cortical slices: I. Receptor characterization. J. Neurochem., 42, 1379–1387.

    Article  PubMed  CAS  Google Scholar 

  • Chen C.-K., Silverstein F. S., Fisher S. K., Statman D., and Johnston M. V. (1988) Perinatal hypoxic-ischemic brain injury enhances quisqualic acid-stimulated phosphoinositide turnover. J. Neurochem., 51, 353–359.

    Article  PubMed  CAS  Google Scholar 

  • Davis J.N. and Carlsson A. (1973) The effect of hypoxia on monoamine synthesis, levels and metabolism in rat brain. J. Neurochem., 21, 783–790.

    Article  PubMed  CAS  Google Scholar 

  • Dolivo M. (1974) Metabolism of mammalian sympathetic ganglia. Fed. Proc., 33, 1043–1048.

    PubMed  CAS  Google Scholar 

  • Gibson G. E. and Duffy T. E. (1981) Impaired synthesis of acetylcholine by mild hypoxic hypoxia or nitrous oxide. J. Neurochem., 36, 28–33.

    Article  PubMed  CAS  Google Scholar 

  • Gibson G. E., Peterson, C. and Sansone J. (1981) Decreases in amino acid and acetylcholine metabolism during hypoxia. J. Neurochem., 37, 192–201.

    Article  PubMed  CAS  Google Scholar 

  • Gorman A. L. F. (1966) Differential patterns of activation of the pyramidal system elicited by surface anodal and cathodal cortical stimulation. J. Neurophysiol., 29, 547–564.

    PubMed  CAS  Google Scholar 

  • Hansen A. J., Haunsgaard J. and Jahnsen H. (1982) Anoxia increases potassium conductance in hippocampal nerve cells, Acta Physiol. Scand., 115, 301–310.

    Article  PubMed  CAS  Google Scholar 

  • Jolles J., Zwiers H., Dekker A., Wirtz K. W. A. and Gispen W. H. (1981) Corticotropin-(1–24)-tetracosapeptide affects protein phosphorylation and polyphosphoinositide metabolism in bat brain. Biochem. J., 194, 283–291.

    PubMed  CAS  Google Scholar 

  • Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Miwa S., Fujiwara M., Inoue M. and Fujiwara M. (1986) Effects of hypoxia on the activities of noradrenergic and dopaminergic neurons in the rat brain. J. Neurochem., 47, 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya H., Taniguchi T., Fujiwara M. and Kameyama M. (1988) Increased binding of [3H]muscimol and [3H]flunitrazepam in the rat brain under hypoxia. J. Neurochem., 51, 1111–1117.

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya H., Taniguchi T., Fujiwara M. and Kameyama M. (1989) Effects phosphoinositide turnover in rat brain slices. J. Neurochem., 53, 183–190.

    Article  PubMed  CAS  Google Scholar 

  • Shiff S. J. and Balestrino M. (1985) Possible mechanism of posthypoxic hyperexcitabi1ity in hippocampal slices. Soc. Neurosci. Abstr. 11, 374.

    Google Scholar 

  • Schiff S.J. and Somjen G. G. (1984) Hypoxia and synaptic function. Clin. Neuropharmacol. 7 (suppl 1), 498–499.

    Google Scholar 

  • Schiff S.J. and Somjen G. G. (1985) Hyperexcitability following moderate hypoxia in hippocampal tissue slices. Brain Res., 337, 337–340.

    Article  PubMed  CAS  Google Scholar 

  • Schiff S.J. and Somjen G. G. (1987) The effect of graded hypoxia on the hippocampal slice: A in vitro model of the ischemic penumbra. Stroke, 18, 30–37.

    Article  PubMed  CAS  Google Scholar 

  • Seren M.S., Aldinio C., Zanoni R., Leon A. and Nicoletti F. (1989) Stimulation of inositol phospholipid hydrolysis by excitatory amino acids is enhanced in brain slices from vulnerable regions after transient global ischemia. J. Neurochem., 53, 1700–1705.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Ninomiya, H., Taniguchi, T., Fujiwara, M. (1991). Effects of Oxygen Depletion on Phosphoinositide Breakdown in Rat Brain Slices. In: Kito, S., Segawa, T., Olsen, R.W. (eds) Neuroreceptor Mechanisms in Brain. Advances in Experimental Medicine and Biology, vol 287. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5907-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5907-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5909-8

  • Online ISBN: 978-1-4684-5907-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics