Effect of Neuropeptides on Classic Types of Neurotransmission in the Rat Central Nervous System

  • Shozo Kito
  • Rie Miyoshi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 287)


Neuromodulator is a term for which there is no clear definition. For the past several years, the authors have been studing how neuropeptides modulate classic types of neurotransmission. We observed two examples of peptide action, that is, an effect of somatostatin on muscarinic acetylcholine receptors (mAChR) and that of cholecystokinin (CCK) on dopamine receptors in the rat brain, and obtained results suggesting that these two peptides modulated classical neurotransmitter receptors in a similar manner.


Dopamine Receptor Agonist Binding Normal Buffer Agonist Binding Site mAChR Agonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beal, M.F., Mazurek, M.F., Svendsen, C.N., Bird, E.D., and Martin, J.B., 1986, Widespread reduction of somatostatin-like immunoreactivity in the cerebral cortex in Alzheimer’s disease, Ann Neurol., 20: 489–495.PubMedCrossRefGoogle Scholar
  2. Berridge, M.J., and Irvine, R.F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature, 312:315– 321.PubMedCrossRefGoogle Scholar
  3. Brown, E., Kendall, D.A., and Nahorski, S.R., 1984, Inositol phospholipid hydrolysis in rat cerebral cortical slices: I. receptor characterisation, J. Neurochem., 42:1379–1387.PubMedCrossRefGoogle Scholar
  4. Catalan, R.E., Aragones, M.D., and Martinez, A.M., 1979, Somatostatin effect on cyclic AMP and cyclic GMP levels in rat brain, Biochim. Biophys. Acta, 586:213–216.CrossRefGoogle Scholar
  5. Chneiweiss, H., Bertrand, Ph., Epelbaum, J., Kordon, C., Glowinski, J., Premont, J., and Enjalbert, A., 1987, Somatostatin receptors on cortical neurons and adenohypophysis: comparison between specific binding and adenylate cyclase inhibition, Eur. J. Pharmacol., 138:249–255.PubMedCrossRefGoogle Scholar
  6. Consolo, S., Fisone, G., Bartfai, T., and Palazzi, E., 1989, Voltage-dependent 2+ Ca channels modulate galanin inhibition of the muscarinic stimulation of phosphoinositide turnover in rat ventral hippocampus, Society for Neuroscience, Abstract, 1277.Google Scholar
  7. Coyle, J.T., Price, D.L., and DeLong, M.R., 1983, Alzheimer’s disease: a disorder of cortical cholinergic innervation, Science, 219:1184–1190.PubMedCrossRefGoogle Scholar
  8. Diez, J., and Tamargo, J., 1987, Effect of somatostatin on Ca fluxes in guinea-pig isolated atria, Br. J. Pharmacol., 90:309–314.PubMedGoogle Scholar
  9. Dodd, J. and Kelly, J.S., 1978, Is somatostatin an excitatory transmitter in the hippocampus? Nature, 273:674–675.PubMedCrossRefGoogle Scholar
  10. Dutar, P., Lamour, Y., and Nicoll, R.A., 1989, Galanin blocks the slow cholinergic EPSP in CA1 pyramidal neurons from ventral hippocampus, Eur. J. Pharmacol., 164:355–360.PubMedCrossRefGoogle Scholar
  11. Gaudreau, P., St-Pierre, S., Pert, C.B., and Quirion, R., 1985, Cholecystokinin receptors in mammalian brain, Ann. N. Y. Acad. Sci., 198–219.Google Scholar
  12. Grigoriadis, D., and Seeman, P., 1985, Complete conversion of brain D dopamine receptors from the high-to the low-affinity state for dopamine agonists, using sodium ions and guanine nucleotide, J. Neurochem., 44:1925–1935.PubMedCrossRefGoogle Scholar
  13. Hokfelt, T., Sharp, T., Ungerstedt, U., and Zetterstrom, T., 1985, Effect of CCK peptides on dopamine release and metabolism in rat striatum in vivo, Br. J. Pharmacol., 7P.Google Scholar
  14. Hommer, D.W., Stoner, G., Crawley, J.N., Paul, S.M., and Skirboll, L.R., 1986, Cholecystokinin-dopamine coexistence: electrophysiological actions corresponding to cholecystokinin receptor subtype, J. Neurosci., 10:3039–3043.Google Scholar
  15. Ioffe, S., Havlicek, V., Friesen, H., and Chernick, V., 1978, Effect of somatostatin (SRIF) and L-glutamate on neurons of the sensorimotor cortex in awake habituated rabbits, Brain Res., 153:414–418.PubMedCrossRefGoogle Scholar
  16. Iorio, L.C., Barnett, A., Leitz, F.H., Houser, V.P., and Korduba, C.A., 1983, SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems, J. Pharmacol. Exp. Ther., 226:462–468.PubMedGoogle Scholar
  17. Janowsky, A., Labarca, R., and Paul, S.M., 1984, Characterization of neurotransmitter receptor-mediated phosphatidylinositol hydrolysis in the rat hippocampus, Life Sci., 35:1953–1961.PubMedCrossRefGoogle Scholar
  18. Kudo, Y., Ozaki, K., Miyakawa, A., Amano, T., and Ogura, A., 1986, Monitoring of intracellular 2+Ca elevation in a single neural cell using a fluorescence microscope/video-camera system, Japan. J. Pharmacol., 41:345–351.CrossRefGoogle Scholar
  19. Kovacs, G.L., Szabo, G., Penke, B., and Telegdy, G., 1981, Effects of cholecystokinin octapeptide on striatal dopamine metabolism and on apomorphine-induced stereotyped cage-climbing in mice, Eur. J. Pharmacol., 69:313–319.PubMedCrossRefGoogle Scholar
  20. Leff, S.E., and Creese, I., 1983, Dopamine receptors reexplained, Trends Pharmacol. Sci., 463–467.Google Scholar
  21. Luini, A., Lewis, D., Guild, S., Schofield, G., and Weight, F., 1986, Somatostatin, an inhibitor of ACTH secretion, decreases cytosolic free calcium and voltage-dependent calcium current in a pituitary cell line, J. Neurosci., 6:3128–3132.PubMedGoogle Scholar
  22. Melander, T., Staines, W.A., Hokfelt, T., Rokaeus, A., Eckenstein, F., Salvaterra, P.M., and Wainer, B.H., 1985, Galanin-like immunoreactivity in cholinergic neurons of the septum-basal forebrain complex projecting to the hippocampus of the rat, Brain Res., 360:130–138.PubMedCrossRefGoogle Scholar
  23. Nishizuka, Y., 1986, Studies and perspectives of protein kinase C, Science, 233:305–312.PubMedCrossRefGoogle Scholar
  24. Olpe, H.R., Balcar, V.J., Bittiger, H., Rink, H., and Sieber, P., 1980, Central actions of somatostatin, Eur. J. Pharmacol., 63:127–133.PubMedCrossRefGoogle Scholar
  25. Perry, E.K., Perry, R.H., Blessed, G., and Tomlinson, B.E., 1977, Necropsy evidence of central cholinergic deficits in senile dementia, The Lancet, 22:189.CrossRefGoogle Scholar
  26. Roberts, G.W., Crow, T.J., and Polak, J.M., 1985, Location of neuronal tangles in somatostatin neurones in Alzheimer’s disease, Nature, 314:92–94.PubMedCrossRefGoogle Scholar
  27. Senut, M.C., Menetrey, D., and Lamour, Y., 1989, Cholinergic and peptidergic projections from the medial septum and the nucleus of the diagonal band of Broca to dorsal hippocampus, cingulate cortex and olfactory bulb: a combined wheatgerm agglutinin-apohorseradish peroxidase-gold immunohistochemical study, Neurosci., 30:385–403.CrossRefGoogle Scholar
  28. Starr, M.S., 1982, Influence of peptides on H-dopamine release from superfused rat striatal slices, Neurochem. Int., 4:233–240.PubMedCrossRefGoogle Scholar
  29. Stoof, J.C., and Kebabian, J.W., 1984, Two dopamine receptors: biochemistry, physiology and pharmacology, Life Sci., 35:2281–2296.PubMedCrossRefGoogle Scholar
  30. Vickroy, T.W., Watson, M., Yamamura, H.I., and Roeske, W.R., 1984, Differential regulation of putative M1/M2 muscarinic receptors: implications for different receptor-effector coupling mechanisms, in “Neurotransmitter Receptors: Mechanisms of Action and Regulation”, S. Kito, T. Segawa, K. Kuriyama, H.I. Yamamura, and R.W. Olseri, eds., Plenum Press, New York, 99–114.Google Scholar
  31. Wood, P.L., Cheney, D.L., and Costa, E., 1981, Interaction of neuropeptides with cholinergic septal-hippocampal pathway: indication for a possible trans-synaptic regulation, in “Cholinergic Mechanisms”, G. Perpru, and H. Ladinsky, eds., Plenum Press, New York, 715–722.Google Scholar
  32. Yamano, M., and Luiten, P.G., 1989, Direct synaptic contacts of medial septal efferents with somatostatin immunoreactive neurons in the rat hippocampus, Brain Res. Bull., 22:993–1001.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Shozo Kito
    • 1
  • Rie Miyoshi
    • 1
  1. 1.Third Department of Internal MedicineHiroshima University School of MedicineMinamiku, Hiroshima 734Japan

Personalised recommendations