Advertisement

Implications of Thiolester Linked Fatty Acids in Apolipoprotein B

  • Diana M. Lee
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 285)

Abstract

Apolipoprotein B (ApoB) is obligatory for triglyceride transport. Why ApoB is singled out among all apolipoproteins is not well understood. ApoB is the most hydrophobic apolipoprotein among all known apolipoproteins. It has the highest tendency to undergo aggregation. If one examines the amino acid composition of ApoB it resembles any other common water-soluble protein. Why, then, is ApoB so hydrophobic? We believe that the thiolester 1 2 bound fatty acids recently found in ApoB1,2 may play an important role in contributing to the hydrophobic nature of ApoB.

Keywords

Sindbis Virus Human Apolipoprotein Vesicular Stomatitis Virus Glycoprotein Fatty Acid Acylation Hydropathy Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Huang, D. M. Lee and S. Singh, Identification of the thiol ester linked lipids in apolipoprotein B, Biochemistry 27:1395 (1988).PubMedCrossRefGoogle Scholar
  2. 2.
    V. S. Kamanna and D. M. Lee, Presence of covalently attached fatty acids in rat apolipoprotein B via thiolester linkages, Biochem. Biophys. Res. Commun. 162:1508 (1989).CrossRefGoogle Scholar
  3. 3.
    J. Kyte and R. F. Doolittle, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157:105 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    T. P. Hopp and K. R. Woods, Prediction of protein antigenic determinants from amino acid sequences, Proc. Natl. Acad. Sci. 78:3824 (1981).CrossRefGoogle Scholar
  5. 5.
    S.-H. Chen, C.-Y. Yang, P. F. Chen, D. Setzer, M. Tanimura, W.-H. Li, A. M. Gotto and L. Chan, The complete cDNA and amino acid sequence of human apolipoprotein B-100, J. Biol. Chem. 261:12918 (1986).Google Scholar
  6. 6.
    B. Meloun, L. Morávek and V. Kostka, Complete amino acid sequence of human serum albumin, FEBS Lett. 58:134 (1975).PubMedCrossRefGoogle Scholar
  7. 7.
    S.-O. Olofsson, G. Bjursell, K. Boström, P. Carlsson, J. Elovson, A. A. Protter, M. A. Reuben and G. Bondjers, Apolipoprotein B: structure, biosynthesis and role in the lipoprotein assembly process, Athero sclerosis 68:1 (1987).Google Scholar
  8. 8.
    T. J. Knott, R. J. Pease, L. M. Powell, S. C. Wallis, S. C. Rall, Jr., T. L. Innerarity, B. Blackhart, W. H. Taylor, Y. Marcel, R. Milne, D. Johnson, M. Fuller, A. J. Lusis, B. J. McCarthy, R. W. Mahley, B. Levy-Wilson and J. Scott, Complete protein sequence and identification of structural domains of human apolipoprotein B, Nature 323:734 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    C.-Y. Yang, S.-H. Chen, S. H. Gianturco, W. A. Bradley, W.A., J. T. Sparrow, M. Tanimura, W.-H. Li, D. W. Sparrow, H. DeLoof, M. Rosseneu, F.-S. Lee, Z.-W. Gu, A.M. Gotto, Jr. and L. Chan, Sequence, receptor-binding domains and internal repeats of human apolipoprotein B-100, Nature 323:738 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    B.F. Tack, R.A. Harrison, J. Janatova, M.L. Thomas and J.W. Prahl, Evidence for presence of an internal thiolester bond in third component of human complement, Proc. Natl. Acad. Sci. USA 77:5764 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    D.M. Lee and S. Singh, Presence and localization of two intramolecular thiolester linkages in apolipoprotein B, Circulation 76II:286 (1988).Google Scholar
  12. 12.
    W.R. Fisher, The structure of lipoproteins: Covalently bound fatty acids, Ph.D. Dissertation, University of Pennsylvania, University Microfilms, Inc., Ann Arbor, MI (1964).Google Scholar
  13. 13.
    W.R. Fisher and S. Gurin, Structure of lipoproteins. Covalently bound fatty acids. Science 143:362 (1964).PubMedCrossRefGoogle Scholar
  14. 14.
    J.M. Hoeg, M.S. Meng, R. Ronan, S.J. Demosky, Jr., T. Fairwell and H.B. Brewer, Jr., Apolipoprotein B synthesized by Hep G2 cells undergoes fatty acid acylation, J. Lipid Res. 29:1215 (1988).PubMedGoogle Scholar
  15. 15.
    J.M. Hoeg, M.S. Meng, R. Ronan, T. Fairwell and H.B. Brewer, Jr., Human apolipoprotein A-I. Post-translational modification by fatty acid acylation, J. Biol. Chem. 261:3911 (1986).PubMedGoogle Scholar
  16. 16.
    D.M. Lee, A.J. Valente, W.H. Kuo and H. Maeda, Properties of apolipoprotein B in urea and in aqueous buffers. The use of glutathione and nitrogen in its solubilization, Biochim. Biophys. Acta 666:133 (1981).PubMedGoogle Scholar
  17. 17.
    Y.M. Torchinsky, The chemical properties of SH groups. Sulfhydryl reagents, in: Sulfur in Proteins, Y.M. Torchinsky, ed., Pergamon Press, New York, NY (1981).Google Scholar
  18. 18.
    J.E. Buss and B.M. Sefton, Direct identification of palmitic acid as the lipid attached to p21raS, Mol. Cell. Biol. 6:116 (1986).Google Scholar
  19. 19.
    Z.-Q. Chen, L.S. Ulsh, G. DuBois and T.Y. Shih, Posttranslational processing of p21 ras proteins involves palmitylation of the C-terminal tetrapeptide containing Cysteine-186, J. Virology 56:607 (1985).PubMedGoogle Scholar
  20. 20.
    B.M. Sefton, I.S. Trowbridge, J.A., Cooper and E.M. Scolnick, The transforming proteins of Rous sarcoma virus, Harvey sarcoma virus and Abelson virus contain tightly bound lipid, Cell 31:465 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    B.M. Willumsen, K. Norris, A.G. Papageorge, N.L. Hubbert and D.R. Lowy, Harvey murine sarcoma virus p21 ras protein: Biological significance of the cysteine nearest the carboxy terminus, EMBO J. 3:2581 (1984).PubMedGoogle Scholar
  22. 22.
    M.F.G. Schmidt and M.J. Schlesinger, Fatty acid binding to vesicular stomatitis virus glycoprotein: a new type of posttranslational mod ification of the viral glycoprotein, Cell 17:813 (1979).PubMedCrossRefGoogle Scholar
  23. 23.
    M.F.G. Schmidt and M.J. Schlesinger, Relation of fatty acid attachment to the translation and maturation of vesicular stomatitis and Sindbis virus membrane glycoproteins, J. Biol. Chem. 255:3334 (1980).PubMedGoogle Scholar
  24. 24.
    M.F.G. Schmidt, M. Bracha and M.J. Schlesinger, Evidence for covalent attachment of fatty acids to Sindbis virus glycoproteins, Proc. Natl. Acad. Sci. USA 76:1687 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    J.K. Rose, G.A. Adams and C.J. Gallione, The presence of cysteine in the cytoplasmic domain of the vesicular stomatitis virus glycoprotein is required for palmitate addition, Proc. Natl. Acad. Sci. USA81:2050 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    J.F. Kaufman, M.S. Krangel and J.L. Strominger, Cysteines in the transmembrane region of major histocompatibility complex antigens are fatty acylated via thioester bonds, J. Biol. Chem. 259:7230 (1984).PubMedGoogle Scholar
  27. 27.
    M.B. Omary and I.S. Trowbridge, Covalent binding of fatty acid to thetransferrin receptor in cultured human cells, J. Biol. Chem. 256:4713 (1981).Google Scholar
  28. 28.
    M. Staufenbiel and E. Lazaride, Ankyrin is fatty acid acylated inerythrocytes, Proc. Natl. Acad. Sci. USA 83:318 (1986).PubMedCrossRefGoogle Scholar
  29. 29.
    P.J. O’Brien and M. Zatz, Acylation of bovine rhodopsin by [3H]palmitic acid, J. Biol. Chem. 259:5054 (1984).PubMedGoogle Scholar
  30. 30.
    J.H.P. Skene and I. Virág, Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43, J. Cell Biol. 108:613 (1989).PubMedCrossRefGoogle Scholar
  31. 31.
    S. Jing and I.S. Trowbridge, Identification of the intermolecular disulfide bonds of the human transferrin receptor and its lipid-attachment site, EMBO J. 6:327 (1987).PubMedGoogle Scholar
  32. 32.
    M.F.G. Schmidt, Acylation of viral spike glycoproteins: A feature of enveloped RNA viruses, Virology 116:327 (1982).PubMedCrossRefGoogle Scholar
  33. 33.
    U. Klockmann and W. Deppert, Acylated simian virus 40 large T-antigen: a new subclass associated with a detergent-resistant lamina of the plasma membrane, EMBO J. 2:1151 (1983).PubMedGoogle Scholar
  34. 34.
    B.M. Sefton and J.E. Buss, The covalent modification of eukaryoticproteins with lipid, J. Cell Biol. 104:1449 (1987).PubMedCrossRefGoogle Scholar
  35. 35.
    J.E. Buss, P.A. Solski, J.P. Schaeffer, M.J. MacDonald, C.J. Der, Activation of the cellular proto-oncogene produce p21 ras by addition of a myristylation signal, Science 243:1600 (1989).PubMedCrossRefGoogle Scholar
  36. 36.
    A.I. Magee, L. Gutierrez, I.A. McKay, C.J., Marshall and A. Hall, Dynamic fatty acylation of p21N-ras , EMBO J. 6:3353 (1987).PubMedGoogle Scholar
  37. 37.
    W.G. Dunphy, E. Fries, L.J. Urbani and J.E. Rothman, Early and late functions associated with the Golgi apparatus reside in distinct compartments, Proc. Natl. Acad. Sci. USA 78:7453 (1981).PubMedCrossRefGoogle Scholar
  38. 38.
    G. Ponsin, Relationship between structure and metabolism of HDL apo-lipoproteins: Study with synthetic peptides, Adv. Exp. Med. Biol. 243:139 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Diana M. Lee
    • 1
  1. 1.Lipoprotein and Atherosclerosis Research ProgramOklahoma Medical Research FoundationOklahoma CityUSA

Personalised recommendations