Immune Mechanisms in the Pathogenesis of Atherosclerosis

  • Maria F. Lopes-Virella
  • G. Virella
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 285)


It is generally accepted that arteriosclerosis is a multifactorial disease and that several risk factors contribute to its development. However the correlation between the development of arteriosclerosis and the presence of any of the known risk factors or associations of risk factors is not perfect. Furthermore, the precise mechanism by which each risk factor contributes to the pathogenesis of arteriosclerosis is not well understood. Thus, there has been a persistent development of new thoughts and theories concerning risk factors and their relative pathogenic roles. In the past decade an upsurge of interest in the role of immune mechanisms in the development of arteriosclerosis has emerged. In the present review we will analyzed data suggesting that immunological factors may contribute, directly or indirectly, to the sequence of pathological events leading to the development of arteriosclerosis.


Foam Cell Smooth Muscle Cell Proliferation Foam Cell Formation Human Vascular Endothelial Cell Atheromatous Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews B.S., Shadforth M., Cunningham P., Davis J.S. IV. Demonstration of a Clq receptor on the surface of human endothelial cells. J. Immunol. 127:1075,1981.PubMedGoogle Scholar
  2. 2.
    Beaumont J.L. Autoimmune hyperlipidemia. An atherogenic metabolic disease of immune origin. Rev. Eur. Stud. Clin. Biol. 15:1037, 1970.Google Scholar
  3. 3.
    Beaumont J.L., Beaumont V. Immunological Aspects of Atherosclerosis. Atherosclerosis. Reviews 3:133, 1978.Google Scholar
  4. 4.
    Bevilacqua M.P., Pober J.S., Majeau G.R., Cotran R.S., Gimbrone M.A., Jr. Interleukin 1 induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J. Exp. Med. 160:618, 1984.PubMedCrossRefGoogle Scholar
  5. 5.
    Bevilacqua M.P., Pober J.S., Wheeler M.E., Cotran R.S., Gimbrone M.A. jr. Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines. J. clin. Invest. 76:2003, 1985.PubMedCrossRefGoogle Scholar
  6. 6.
    Bevilacqua M.P., Stengelin S., Gimbrone M.A. Jr., Seed B. Endothelial leukocyte adhesion molecule 1: and inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243:1160, 1989.PubMedCrossRefGoogle Scholar
  7. 7.
    Boackle R. The complement system. In “Introduction to Medical Immunology”, 2nd Ed. (Virella G., Goust J.M. and Fudenbcrg H.H., Eds.) M. Dekker, NY 1990, pp.143.Google Scholar
  8. 8.
    Bonney R J., Humes J.L. Physiological and pharmacological regulation of prostaglandin and leukotriene production by macrophages. J. Leukocyte Biol. 35:1,1984.PubMedGoogle Scholar
  9. 9.
    Breedveld F.C., Heurkens A.H., Lafeber G.J.M., van Hinsbcrgh V.W.M., Cats A. Immune complexes in sera from patients with rheumatoid vasculits induce polymorphonuclear cell-mediated injury to endothelial cells. Clin. Immunol. Immunopath. 48:202, 1988.CrossRefGoogle Scholar
  10. 10.
    Breviario F., Bertocchi F., Dejana E., Bussolino F. IL-1 induced adhesion of polymorphonuclear leukocytes to cultured human endothelial cells. Role of platelet-activating factor. J. Immunol. 141:3391, 1988.PubMedGoogle Scholar
  11. 11.
    Brownlee M., Vlassara H., Ccrami A. Nonenzymatic glycosylation products on collagen covalently trap low density lipoprotein. Diabetes 34: 938, 1985.PubMedCrossRefGoogle Scholar
  12. 12.
    Camejo G. The Interactions of Lipids and Lipoproteins with the Intercellular Matrix of Arterial Tissue: It’s Possible Role in Atherogenesis. Adv. Lipid Res. 19:1, 1982.PubMedGoogle Scholar
  13. 13.
    Cavender D., Haskard D., Foster N., Ziff M. Superinduction of T lymphocyte-endothelial cell (EC) binding by treatment of EC with intcrlcukin 1 and protein synthesis inhibitors. J. Immunol., 138: 2149, 1987.PubMedGoogle Scholar
  14. 14.
    Cavender D., Saegusa Y., Ziff M. Stimulation of endothelial cell binding of lymphocytes by tumor necrosis factor. J. Immunol., 139: 1855, 1987.PubMedGoogle Scholar
  15. 15.
    Cerami A., Beutler B. The role of cachcctin/TNF in endotoxic shock and cachexia. Immunol. Today 9:28, 1988.PubMedCrossRefGoogle Scholar
  16. 16.
    Cerilli J., Brasile L., Sosa J., Kremcr J., Clarke J., Leather R., Shah D. The role of autoantibody to vascular endothelial cell antigens in atherosclerosis and vascular disease. Transplant. Proc. 4 (Suppl.5):47, 1987.Google Scholar
  17. 17.
    Chait A., Iverius P.H., Brunzcll J.D.: Lipoprotein lipase secretion by human monocyte-derived macrophages. J. Clin. Invest. 69: 490, 1982.PubMedCrossRefGoogle Scholar
  18. 18.
    Chait A., Ross R., Albers J.J., Bierman E.L. Platelet-Derived Growth Factor Stimulates Activity of Low Density Lipoprotein Receptors. Proc. Natl. Acad. Sci. U.S.A. 77:4084,1980.PubMedCrossRefGoogle Scholar
  19. 19.
    Chou Y.K., Sherwood T., Virella G. Erythrocyte-bound immune complexes trigger the release of interleukin-1 from human monocytes. Cell. Immunol., 91:308, 1985.PubMedCrossRefGoogle Scholar
  20. 20.
    Dachet C., Bandet M.F., Beaumont, J.L. Cholesterol synthesis by human fibroblasts in the presence of LDL and anti-LDL IgA. Biomcdicine 31:80,1979.Google Scholar
  21. 21.
    Damle N.K., Doyle L.V., Bender J.R., Bradley E.C. Interleukin 2-activated human lymphocytes exhibit enhanced adhesion to normal vascular endothelial cells and cause their lysis. J. Immunol. 138: 1779, 1987.PubMedGoogle Scholar
  22. 22.
    Davis M.M., Bjorkman P.J. T-cell antigen receptor genes and T-ccll recognition. Nature 334: 395, 1988.PubMedCrossRefGoogle Scholar
  23. 23.
    Debets J.M.H., van dcr Linden C.J., Diclcrcn I.E.M., Lccuwcnberg J.F.M., Buurman W.A.: Fc-receptor cross-linking induces rapid secretion of tumor necrosis factor (cachectin) by human peripheral blood monocytes. J. Immunol. 141:1197, 1988.PubMedGoogle Scholar
  24. 24.
    Diener A., Beatty P.G., Ochs H.D., Harlan J.M. The role of neutrophil membrane glycoprotein 150 (GP-150) in neutrophil-mediatcd endothelial cell injury in vitro. J. Immunol. 135:537,1985.PubMedGoogle Scholar
  25. 25.
    Doherty D.E., Haslett C., Tonnenscn M.G., Henson P.M. Human monocyte adherence: a primary effect of chemotactic factors on the monocyte to stimulate adherence to human endothelium. J. Immunol. 138:1762, 1987.PubMedGoogle Scholar
  26. 26.
    Ellsworth J.L., Kraemer F.B., Cooper A.D. Transport of B-very low density lipoproteins and chylomicron remnants by macrophage is mediated by the LDL receptor pathway. J. Biol. Chem. 262:2316, 1987.PubMedGoogle Scholar
  27. 27.
    Emeson E.E., Robertson A.L. T lymphocytes in aortic and coronary intimas. Their potential role in atherogenesis. Am. J. Pathol. 130:369, 1988.PubMedGoogle Scholar
  28. 28.
    Faggiotto A., Ross R. Studies of Hypercholesterolemia in the Nonhuman Primate. II. Fatty Streak Conversion to Fibrous Plaque. Arteriosclerosis 4:341, 1984.PubMedCrossRefGoogle Scholar
  29. 29.
    Faggiotto A., Ross R., Harkcr, L. Studies of Hypercholesterolemia in the Nonhuman Primate. I. Changes that Lead to Fatty Streak Formation. Arteriosclerosis 4:323,1984.PubMedCrossRefGoogle Scholar
  30. 30.
    Feingold K.R., Castro G.R., Yo I., Fielding P.E., Fielding C.J. Cutaneous Xanthoma in Association with Paraproteinemia in the Absence of Hyperlipidcmia. J. Clin. Invest. 83:796,1989.PubMedCrossRefGoogle Scholar
  31. 31.
    Ferreri N. R., Howland W. C., Spicgclberg H. L. Release of leukotrienes C4 and B4 and prostaglandin E2 from human monocytes stimulated with aggregated IgG, IgA, and IgE. J. Immunol. 136: 4188, 1986.PubMedGoogle Scholar
  32. 32.
    Floren C.H., Albers J.J., Bierman E.L. Uptake of Lp(a) lipoprotein by cultured fibroblasts. Biochem. Biophys. Res. Commun. 102:636, 1981.PubMedCrossRefGoogle Scholar
  33. 33.
    Fust G., Szondy E., Szckely J., Nanai I., GerG S. Studies on the occurrence of circulating immune complexes in vascular disease. Arteriosclerosis 29:181,1978.CrossRefGoogle Scholar
  34. 34.
    Gamble J.R., Harlan J.N., Klebanoff SJ., Vadas M.A. Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc. Nat. Acad. Sci. U.S.A. 82:8667,1985.CrossRefGoogle Scholar
  35. 35.
    Gero S., Szondy E., Mezey Z., Szekely J. Immune response against lipoproteins in coronary patients. In “Latent dyslipoproteinemias and arteriosclerosis”, edited by DeGennes J. L., Raven Press, New York, 1984, pp.73.Google Scholar
  36. 36.
    Gerrity R.G. The role of the monocyte in atherogenesis. I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am. J. Pathol. 103:181, 1981.PubMedGoogle Scholar
  37. 37.
    Griffith R.L., Virella G.T., Stevenson H.C., Lopes-Virella M.F. Low Density Lipoprotein Metabolism By Human Macrophages Activated With Low Density Lipoprotein Immune Complexes. J. Exp. Med. 168:1041, 1988.PubMedCrossRefGoogle Scholar
  38. 38.
    Hansson, G., Jonasson L., Seifert P., Stemme S. Immune Mechanisms in Arteriosclerosis. Arteriosclerosis 9; 567,1989.PubMedCrossRefGoogle Scholar
  39. 39.
    Havekes L., Vermeer B.J., Brugman T., Emeis J. Binding of Lp(a) to the low density lipoprotein receptor of human fibroblasts. FEBS Lett. 132:169,1981.PubMedCrossRefGoogle Scholar
  40. 40.
    Henricksen T., Evensen S.A., Carlandcr B. Injury to human endothelial cells in culture induced by low density lipoproteins. Scand. J. Clin. Lab. Invest. 39:361, 1979.CrossRefGoogle Scholar
  41. 41.
    Hurt E., Camejo G. Effect of Arterial Proteoglycans on the Interaction of LDL with Human Monocytederived Macrophages. Atherosclerosis 67:115,1987.PubMedCrossRefGoogle Scholar
  42. 42.
    Jonasson L., Bondjers G., Hansson G.K. Lipoprotein lipase in atherosclerosis: its presence in smooth muscle cells and absence from macrophages. J. Lipid Res. 28:437,1987.PubMedGoogle Scholar
  43. 43.
    Jonasson L., Holm J., Skalli O., Bondjers G., Hansson G.K. Regional accumulation of T cells, macrophages and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis. 6:131, 1986.PubMedCrossRefGoogle Scholar
  44. 44.
    Kilpatrick J.M., Hyman B., Virella G. Human endothelial cell damage induced by interactions between polymorphonuclear leukocytes and immune complex-coated erythrocytes. Clin Immunol. Immunopath., 44:335, 1987.CrossRefGoogle Scholar
  45. 45.
    Klimov A.N., Denisenko A.D., Popov A.V., Nagornev V.A., Pleskov V.M., Vinogradov A.G., Denisenko T.V., Magracheva E. Y., Kheifes G.M., Kuznetzov A.S. Lipoprotein-antibody immune complexes: Their catabolism and role in foam cell formation. Atherosclerosis 58:1,1985.PubMedCrossRefGoogle Scholar
  46. 46.
    Koo C, Wernette-Hammond M. E., Innerarity T. L. Uptake of canine beta-very low density lipoprotein by mouse peritoneal macrophages is mediated by a low lipoprotein receptor. J. Biol. Chem. 261:194, 1986.Google Scholar
  47. 47.
    Koo C, Wernette-Hammond M.E., Garcia Z., Malloy M.J., Uauy R., East C.Bilheimer D.W, Mahley R.W., Innerarity T.L. Uptake of Cholesterol-Rich Remnant Lipoproteins by Human Monocyte-Derived Macrophages is Mediated by Low Density Lipoprotein Receptors. J. Clin. Invest. 81:1332,1988.PubMedCrossRefGoogle Scholar
  48. 48.
    Kremnler R, Kostner G. M., Roschcr A., Ilaslaucr F., Bolzano K., Sandhofer K Studies on the role of specific cell surface receptors in the removal of lipoprotein(a) in man. J. Clin. Invest. 71:1431,1983.CrossRefGoogle Scholar
  49. 49.
    Lechi C, Zatti M., Corradini P. Bonadona G. Arosio E., Pedrolii C, Lechi A. Increased leukocyte aggregation in patients with hypcrcholesterolaemia. Clin. Chim. Acta 144:11,1984.PubMedCrossRefGoogle Scholar
  50. 50.
    Libby P., Warner S.J.C., Friedman G.B. Interleukin 1: a mitogen for human vascular smooth muscle cells that induces the release of growth inhibitory prostanoids. J. Clin. Invest. 81:487,1988.PubMedCrossRefGoogle Scholar
  51. 51.
    Lopes-Virella M.F., Virella G. Immunological and Microbiological Factors in the Pathogenesis of Atherosclerosis. Clin. Immunol. Immunopath. 37:377, 1985.CrossRefGoogle Scholar
  52. 52.
    Lopes-Virella M.F., Klein, R.L., Stevenson H.C. Low density lipoprotein metabolism in human macrophages stimulated with microbial or microbial-rclatcd products. Arteriosclerosis 7:176,1987.PubMedCrossRefGoogle Scholar
  53. 53.
    Luscinskas F.W., Brock A.F., Arnaout M.A., Gimbrone M.A. Endothelial-leukocyte adhesion molecule-1-dependent and leukocyte (CDll/CD18)-dcpendent mechanisms contribute to polymorphonuclear leukocyte adhesion to cytokinc-activatcd human vascular endothelium. J. Immunol. 142:2257, 1989.PubMedGoogle Scholar
  54. 54.
    Martin S., Maruta K., Burkart V., Gillis S., Kolb H. IL-1 and INF-y increase vascular permeability. Immunology 64:301, 1988.PubMedGoogle Scholar
  55. 55.
    Marx J.L. Cytokines are Two-edged Swords in Disease. Science 239:257,1988.PubMedCrossRefGoogle Scholar
  56. 56.
    Masuyama J.-I., Minato N., Kano S. Mechanisms of lymphocyte adhesion to human vascular endothelial cells in culture. J. clin. Invest. 77:1396, 1986.CrossRefGoogle Scholar
  57. 57.
    Minick C.R., Murphy G.E. Experimental induction of arteriosclerosis by the synergy of allergic injury to arteries and lipid-rich diet. II. Effect of repeatedly injected foreign protein in rabbits fed a lipid-rich, cholesterol-poor diet. Amer. J. Path. 73:265,1973.PubMedGoogle Scholar
  58. 58.
    Munro J.M., van der Walt J.D., Munro C.S., Chalmers J.A.C., Cox EX.: An immunohistochemical analysis of human aortic fatty streaks. Hum. Pathol. 18: 375,1987.PubMedCrossRefGoogle Scholar
  59. 59.
    Musson R.A., Shafran H., Hcnson P.M. Intracellular levels and stimulated release of lysosomal enzymes from human peripheral blood monocytes and monocyte-derived macrophages. J. Reticuloendothelial Soc. 28:249,1980.Google Scholar
  60. 60.
    Nakagawara A., Nathan C.F., Cohn Z.A. Hydrogen peroxide metabolism in human monocytes during differentiation in vitro. J. Clin. Invest. 68:1243, 1981.PubMedCrossRefGoogle Scholar
  61. 61.
    Nathan C.F., Murray H.W., Cohn Z.A. Current concepts: the macrophage as an effector cell. N. Eng. J.. Med. 303:622, 1980.CrossRefGoogle Scholar
  62. 62.
    Nawroth P.P., Bank I., Hadley D., Cassimeris J., Chess L., Stern D. Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce release of interleukin 1. J. exp. Med. 165:1363,1986.CrossRefGoogle Scholar
  63. 63.
    Pober J.J., Gimbrone M.A.Jr., Cotran R.S., Reiss C.S., Burakoff S.J., Fiers W., Ault K.W. la expression by vascular endothelium is inducible by activated T cells and human y interferon. J. exp. Med. 157:1339,1983.PubMedCrossRefGoogle Scholar
  64. 64.
    Pohlman T.H., Staness K.A., Beatty, P.G., Ochs, H.D., Harlan J.M. An endothelial cell surface factor(s) induced in vitro by lipopolysaccharide, interleukin 1, and tumor necrosis factor a increases neutrophil adherence by a CDwl8-dcpcndent mechanism. J. Immunol., 136:4548,1986.PubMedGoogle Scholar
  65. 65.
    Raines E.W., Dower S.K., Ross R. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science 243:393,1989.PubMedCrossRefGoogle Scholar
  66. 66.
    Renkonen R., Mattila P., Turunen J.-P., Häyry P. Lymphocyte binding and penetration through vascular endothelium is stimulated by platelet-activating factor. Scand. J. Immunol. 30:673,1989.PubMedCrossRefGoogle Scholar
  67. 67.
    Ross R. The pathogenesis of atherosclerosis -an update. N. Eng J. Med. 314:488,1986.CrossRefGoogle Scholar
  68. 68.
    Ross R., Glomset J.A. The pathogenesis of atherosclerosis. N. Eng. J. Med. 295: 369, 1976.CrossRefGoogle Scholar
  69. 69.
    Rouzer C.A., Scott W.A., Kempe J., Cohn. Z.A. Prostaglandin synthesis by macrophages require a specific receptor-ligand interaction. Proc. Natl. Acad. Sci. U.S.A. 77:4279,1980.PubMedCrossRefGoogle Scholar
  70. 70.
    Salisbury B.G.J., Falcone D.J., Minick C.R. Insoluble low density lipoprotein-proteoglycan complexes enhance cholesteryl ester accumulation in macrophages. Am.J. Path. 120:6,1985.PubMedGoogle Scholar
  71. 71.
    Smith E.B. The relationship between plasma and tissue lipids in human atherosclerosis. Adv. Lipid Res. 12:1, 1974.PubMedGoogle Scholar
  72. 72.
    Steinberg D. Lipoproteins and Atherosclerosis: Some Unanswered Questions. Am. Heart Journal 113:626, 1987.CrossRefGoogle Scholar
  73. 73.
    Steinberg D., Parthasaralhy S., Carew T.E., Khoo J.C., Witztum J.L. Beyond Cholesterol: Modifications of Low Density Lipoprotein that Increase it’s Atherogenicity. New Eng. J. Med. 320:915, 1989.PubMedCrossRefGoogle Scholar
  74. 74.
    Stevenson H.C., Dekaban G.A., Miller P.J., Benyajati C, Pearson M.L. Analysis of human blood monocyte activation at the level of gene expression. J. Exp. Med. 161:503,1985.PubMedCrossRefGoogle Scholar
  75. 75.
    Szondy E., Lengyel E., Mezey Z., Fust G., Gero S. Occurrence of anti-low density lipoprotein antibodies and circulating immune complexes in aged subjects. Mechanisms of Aging and Development 29:117, 1985.CrossRefGoogle Scholar
  76. 76.
    Szondy E., Horvath M., Mezey Z., Szekely J., Lengyel E., Gero S. Free and Complexed Antilipoprotein Antibodies in Vascular Disease. Atherosclerosis 49:69,1983.PubMedCrossRefGoogle Scholar
  77. 77.
    Tabas I., Weiland D.A., Tall A.R. Unmodified low density lipoprotein causes cholesteryl ester accumulation in J774 macrophages. Proc. Natl. Acad. Sci. U.S.A. 82:416,1985.PubMedCrossRefGoogle Scholar
  78. 78.
    Tanncnbaum S.H., Finko R., Cines D.B. Antibody and immune complexes induce tissue factor production by human endothelial cells. J. Immunol. 137:1532, 1986.Google Scholar
  79. 79.
    Tonnensen M.G., Anderson D.C., Springer T.A., Kncdler A., Avdl N., Hcnson P.M. Adherence of neutrophils to cultured human microvascular endothelial cells. J. clin. Invest. 83:637,1989.CrossRefGoogle Scholar
  80. 80.
    Van Lenten B.J., Fogelman A. M., Haberland M.E., Edwards P. A. The role of lipoproteins and receptor-mediated endocytosis in the transport of bacterial LPS. Proc. Natl. Acad. Sci. U.S.A. 83: 2704, 1986.PubMedCrossRefGoogle Scholar
  81. 81.
    Vijayagopal P., Srinivasan S.R., Jones K.M., Radhakrishnamurthy B., Berenson G.S. Complexes of LDL and arterial proteoglycan aggregates promote cholesteryl ester accumulation in mouse macrophage. Biochimica et. Biophysica Acta. 837:251, 1985.PubMedGoogle Scholar
  82. 82.
    Virella G., Lopes-Virella M.F.L., Shulcr C, Sherwood T., Espinoza G.A., Winocour P. Colwell, J.A. Release of PAF by human polymorphonuclear leukocytes stimulated by immune complexes bound to sepharose particles and human erythrocytes. Immunology 50:43,1983.PubMedGoogle Scholar
  83. 83.
    Warner S.J.C., Auger K.R., Libby P. Interleukin 1 induces interleukin . II. Recombinant human interleukin 1 induces interleukin 1 production by adult human vascular endothelial cells. J. Immunol. 139:1911, 1987.PubMedGoogle Scholar
  84. 84.
    Werb Z., Bonda M.J., Jones P.A. Degradation of connective tissue matrices by macrophages: I. Proteolysis of elastin, glycoproteins, and collagens by proteinases isolated from macrophages. J. Exp. Med. 152:1340, 1980.PubMedCrossRefGoogle Scholar
  85. 86.
    Witztum J.L., Stcinbrccher U.P., Kcsanicmi Y.A., Fisher M. Autoantibodies to glucosylated proteins in the plasma of patients with diabetes mellitus. Proc. Natl. Acad. Sci. U.S.A. 81:3204, 1984.PubMedCrossRefGoogle Scholar
  86. 85.
    Witte L.D., Cornicelli J.A. Platelet-Derived Growth Factor Stimulates Low Density Lipoprotein Receptor Activity in Cultured Human Fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 77:5962, 1980.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Maria F. Lopes-Virella
    • 1
  • G. Virella
    • 2
  1. 1.Department of MedicineMedical University of South Carolina and VA Medical CenterCharlestonUSA
  2. 2.Department of Basic and Clinical Immunology and MicrobiologyMedical University of South Carolina and VA Medical CenterCharlestonUSA

Personalised recommendations