Advertisement

Investigation of Structural Domains in Human Serum Low Density Lipoprotein Apolipoprotein B100

  • Mojgan Djavaheri
  • Lawrence P. Aggerbeck
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 285)

Abstract

Human serum low density lipoprotein (LDL) apolipoprotein B100 (apo-B100) plays a major role in lipid transport and cholesterol metabolism by mediating lipoprotein binding to specific cell surface receptors (the LDL receptor).1 Amino acid mutations in either the LDL receptor or in the apo-B100 molecule can disrupt efficient binding of LDL to the receptor and result in dyslipidemia.2,3 To understand fully how this protein functions at the molecular level, detailed knowledge of its structure must be obtained. The primary structure of apo-B100 has been established indicating that the protein is a single polypeptide chain composed of 4536 amino acid residues.4,5,6 There is, however, little detailed information regarding the secondary and tertiary structure of the protein. The modulation of these different levels of protein structure must have important consequences for both lipoprotein structure and function.

Keywords

Structural Domain Guanidine Hydrochloride Limited Proteolysis Stable Intermediate Protein Structure Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Brown and J. L. Goldstein, A receptor-mediated pathway for cholesterol homeostasis, Science 232: 34–47 (1986).PubMedCrossRefGoogle Scholar
  2. 2.
    J. L. Goldstein, M. S. Brown, R. G. W. Anderson, D. W. Russell and W. J. Schneider, Receptor-mediated endocytosis: Concepts emerging from the LDL receptor system, Ann. Rev. Cell Biol. 1: 1–39 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    L. F. Soria, E. H. Ludwig, H. R. G. Clarke, G. L. Vega, S. M. Grundy and B. J. McCarthy, Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100, Proc. Natl. Acad. Sci. U.S.A. 86: 587–591 (1989).PubMedCrossRefGoogle Scholar
  4. 4.
    T. J. Knott, R. J. Pease, L. M. Powell, S. C. Wallis, S. C. Rall, Jr., T. L. Innerarity, B. Blackhart, W. H. Taylor, Y. Marcel, R. Milne, D. Johnson, M. Fuller, A. J. Lusis, B. J. McCarthy, R. W. Mahley, B. Levy-Wilson and J. Scott, Complete protein sequence and identification of structural domains of human apolipoprotein B, Nature 323: 734–738 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    C.-Y. Yang, S.-H. Chen, S. H. Gianturco, W. A. Bradley, J. T. Sparrow, M. Tanimura, W.-H. Li, D. A. Sparrow, H. DeLoof, M. Rosseneu, F.-S. Lee, A. M. Gotto and L. Chan, Sequence, structure receptor-binding domains and internal repeats of human apolipoprotein B-100, Nature 323: 738–742.1986PubMedCrossRefGoogle Scholar
  6. 6.
    S. W. Law, S. M. Grant, K. Higuchi, A. Hospattankar, K. Lackner, N. Lee and H. B. Brewer, Jr., Human liver apolipoprotein B-100 cDNA: Complete nucleic acid and derived amino acid sequence, Proc. Natl. Acad. Sci. U.S.A. 83: 8142–8146 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    M. G. Rossmann and P. Argos, Protein folding, Annu. Rev. Biochem. 50: 497–532 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    P. S. Kim and R. L. Baldwin, Specific intermediates in the folding reactions of small proteins and the mechanism of Protein folding, Annu. Rev. Biochem. 51: 459–489 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    D. B. Wetlaufer, Nucleation, rapid folding and globular intrachain regions in proteins, Proc. Natl. Acad. Sci. U.S.A. 70: 697–701 (1973).PubMedCrossRefGoogle Scholar
  10. 10.
    P. L. Privalov, Stability of proteins. Small globular proteins, Adv. Protein Chem. 33: 167–241 (1979).PubMedCrossRefGoogle Scholar
  11. 11.
    J. Janin and S. J. Wodak, Structural domains in proteins and their role in the dynamics of protein function, Proa. Biophys. Mol. Biol. 42: 21–78 (1983).CrossRefGoogle Scholar
  12. 12.
    J. S. Richardson, the anatomy and taxonomy of protein structure, Adv. Protein Chem. 34: 167–339 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    J. R. Wetterau, L. P. Aggerbeck, S. C. Rall, Jr., and K. H. Weisgraber, Human apolipoprotein E3 in aqueous solution. I. Evidence for two structural domains, J. Biol. Chem. 263: 6240–6248 (1988).PubMedGoogle Scholar
  14. 14.
    L. P. Aggerbeck, J. R. Wetterau, K. H. Weisgraber, C.-S. C. Wu and F. T. Lindgren, Human apolipoprotein E3 in aqueous solution. II. Properties of the amino-and carboxyl-terminal domains, J. Biol. Chem. 263: 6249–6258 (1988).PubMedGoogle Scholar
  15. 15.
    L. P. Aggerbeck, J. R. Wetterau, K. H. Weisgraber, R. W. Mahley and D. A. Agard, Crystallization and preliminary X-ray diffraction studies on the amino-terminal (receptor binding) domain of human apolipoprotein E3 from serum very low density lipoproteins, J. Mol. Biol. 202: 179–181 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    V. Luzzati, A. Tardieu and L. P. Aggerbeck, Structure of serum low density lipoprotein. I. A solution X-ray scattering study of a hyperlipidemic monkey low density lipoprotein, J. Mol. Biol. 131: 435–473 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    T. Gulik-Krzywicki, M. Yates and L. P. Aggerbeck, Structure of serum low density lipoprotein. II. A freeze-etching electron microscopic study, J. Mol. Biol. 131: 475–484 (1979).Google Scholar
  18. 18.
    G. C. Chen, S. Zhu, D. A. Hardman, J. W. Schilling, K. Lau and J. P. Kane, Structural domains of human apolipoprotein B-100. Differential accessibility to limited proteolysis of B-100 in low density and very low density lipoproteins, J. Biol. Chem264: 14369–14375 (1989).PubMedGoogle Scholar
  19. 19.
    E. Mihalyi, Application of Proteolytic Enzymes to Protein Structure Studies, 2nd Ed., Vol. 1, CRC Press, Inc., Boca Raton, FL. (1978).Google Scholar
  20. 20.
    E. Mihalyi, Application of Proteolytic Enzymes to Protein Structure Studies, 2nd Ed., Vol. 2, CRC Press, Inc., Boca Raton, FL. (1978).Google Scholar
  21. 21.
    T. E. Creighton, Proteins. Structures and Molecular Principles, Freeman Publications, San Francisco (1983).Google Scholar
  22. 22.
    R. J. Pease, R. W. Milne, W. K. Jessup, A. Law, P. Provost, J.-C. Fruchart, R. T. Dean, Y. L. Marcel and J. Scott, Use of bacterial expression cloning to localize the epitopes for a series of monoclonal antibodies against apolipoprotein B100, J. Biol. Chem. 265: 553–568 (1990).PubMedGoogle Scholar
  23. 23.
    M. leMaire, E. Rivas and J. V. Moller, Use of gel chromatography for the determination of size and molecular weight of proteins: Further caution, Anal. Biochem. 106: 12–21 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    M. leMaire, L. P. Aggerbeck, C. Monteilhet, J. P. Andersen and J. V. Moller, The use of high performance liquid chromatography for the determination of size and molecular weight of proteins: A caution and a list of membrane proteins suitable as standards, Anal. Biochem. 154: 525–535 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    M. leMaire, A. Ghazi, J. V. Moller and L. P. Aggerbeck, The use of gel chromatography for the determination of sizes and relative molecular masses of proteins: Interpretation of calibration curves in terms ot gel-pore-size distribution, Biochem. J. 243: 399–404 (1987).PubMedGoogle Scholar
  26. 26.
    A. Gulik, L. P. Aggerbeck, J. C. Dedieu and T. Gulik-Krzywicki, Freeze-fracture electron microscopic analysis of solutions of biological molecules, J. Microscopy 125: 207–213 (1982).CrossRefGoogle Scholar
  27. 27.
    J. E. B. Fox, L. P. Aggerbeck and M. C. Berndt, Structure of glycoprotein Ib-IX complex from platelet membranes, J. Biol. Chem. 263: 4882–4890 (1988).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Mojgan Djavaheri
    • 1
  • Lawrence P. Aggerbeck
    • 1
  1. 1.Centre de Génétique MoléculaireCentre National de la Recherche ScientifiqueGif-sur-YvetteFrance

Personalised recommendations