Advertisement

Role of Amphipathic Helixes in HDL Structure/Function

  • G. M. Anantharamaiah
  • C. G. Brouillette
  • J. A. Engler
  • H. De Loof
  • Y. V. Venkatachalapathi
  • J. Boogaerts
  • J. P. Segrest
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 285)

Abstract

In a recent analysis we classified amphipathic helix domains into a minimum of seven distinct classes. Four amphipathic helix classes are found in lipid-associating proteins: apolipoproteins, certain polypeptide hormones, polypeptide venoms and antibiotics, and certain complex transmem brane proteins. Three amphipathic helix classes are involved in both intra and intermolecular protein-protein interactions: calmodulin-regulated protein kinases, coiled-coil containing proteins that include the so-called leucine zipper, and globular helical proteins.

Three central hypothesis have been developed in our studies of the apolipoprotein class of amphipathic helixes: 1) The “Snorkel” hypothesis proposes that when the amphipathic helix is associated with phospholipid, amphipathic basic residues extend toward the polar face of the helix to insert their charged residues into the aqueous milieu: thus the entirety of the uncharged van der Waals’surface of the amphipathic helix is buried within the lipid. 2) We have formulated a hypothesis that Glutamyl residues located at positions 78 and 111 in apolipoprotein A-I on the nonpolar face of two amphipathic helical domains are critical to LCAT activation. 3) The hinged-domain hypothesis was proposed to explain the structural basis for the quantization of HDL subspecies, protein-protein interactions in HDL, and the HDL disc to sphere transformation.

Keywords

Peptide Analog Acyl Chain Length Amphipathic Helix LCAT Activation Polar Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. P. Segrest, R. L. Jackson, J. D. Morrisett, and A. M. Gotto, Jr., FEBS Lett., 38:247 (1973).CrossRefGoogle Scholar
  2. 2.
    J. P. Segrest, H. De Loof, J. G. Dohlman, C. G. Brouillette, and G. M. Anantharamaiah, Proteins, In press (1990).Google Scholar
  3. 3.
    C -C. Luo, W -H. Li, M. N. Moore, and L. Chan, J. Mol. Biol., 187:325 (1986)PubMedCrossRefGoogle Scholar
  4. 4.
    G. M. Anantharamaiah, J. L. Jones, C. G. Brouillette, C. F. Schmidt, B. H. Chung, T. A. Hughes, A. S. Bhown, and J.P. Segrest, J.Biol. Chem., 260:10248 (1985).PubMedGoogle Scholar
  5. 5.
    G. M. Anantharamaiah, Synthetic peptide analogs of apolipoproteins, In: Methods of Enzymology, J. P. Segrest and J. J. Albers, eds., Academic Press, New York, 128:627 (1986).Google Scholar
  6. 6.
    R. M. Epand, A. Gawish, M. Iqbal, K. B. Gupta, C. H. Chen, J. P. Segrest, and G. M. Anantharamaiah, J. Biol. Chem., 262:9389 (1987).PubMedGoogle Scholar
  7. 7.
    Y. V. Venkatachalapathi, K. B. Gupta, H. De Loof, J. P. Segrest, and G. M. Anantharamaiah, In: Peptides, ESCOM Press (J. Rivier Ed.) 672 (1990)Google Scholar
  8. 8.
    C. J. Fielding, V. G. Shore, P. E. Fielding, Biophys. Biochem. Res. Cpmmun, 46:1493 (1972).CrossRefGoogle Scholar
  9. 9.
    J. J. Albers, J. T. Lin, G. P. Roberts, Artery, 5:61 (1979)PubMedGoogle Scholar
  10. 10.
    G. M. Anantharamaiah, Y. V. Venkatachalapathi, C. G. Brouillette, and J. P. Segrest, Arteriosclerosis, 10:95 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    C. G. Brouillette, J. L. Jones, T. C. Ng, H. Kercert, B. H. Chung, and J. P. Segrest, Biochemistry, 23:359 (1984)PubMedCrossRefGoogle Scholar
  12. 12.
    A. Jonas, K. E. Kezdy, and J. H. Wald, J. Biol. Chem, 264:4818 (1989).PubMedGoogle Scholar
  13. 13.
    W. C. Cheung, J. P. Segrest, J. J. Albers, J. T. Cone, C. G. Brouillette, B. H. Chung, M. Kashyap,, A. Glasscock, and G. M. Anantharamaiah, J. Lipid Res., 28:913 (1987).PubMedGoogle Scholar
  14. 14.
    B. H. Chung, J. P. Segrest M. J. Ray, J. D. Brunzell, J. E. Hokanson, R. M. Krauss, K. Beaudrie, and J. T. Cone, Single vertical spin density gradient ultracentrifugation, In: Methods of Enzymology, J. P. Segrest and J. J. Albers, eds, Academic Press, New York, 128:181 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • G. M. Anantharamaiah
    • 1
  • C. G. Brouillette
    • 1
  • J. A. Engler
    • 1
  • H. De Loof
    • 1
  • Y. V. Venkatachalapathi
    • 1
  • J. Boogaerts
    • 1
  • J. P. Segrest
    • 1
  1. 1.Departments of Medicine., Biochemistry and the Atherosclerosis UnitUAB Medical CenterBirminghamUSA

Personalised recommendations