Osmotic Stress Induces Aldose Reductase in Glomerular Endothelial Cells

  • Thomas C. Hohman
  • Deborah Carper
  • Sarmila Dasgupta
  • Masayuki Kaneko
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 284)


Compelling evidence from animal studies (Robison et al, 1989, Notvest and Inserra, 1987; McCaleb et al, 1988, Kador et al 1988; c.f. Dvornik, 1987) and recent results from human clinical trials (Sima et al, 1988; Boulton, 1989) have implicated aldose reductase (AR), the first enzyme in the polyol pathway, in the initiation of a number of the long-term complications of diabetes. These complications develop in tissues where glucose uptake is independent of insulin. In these tissues during diabetes-induced hyperglycemia there is an intense flux of glucose through the polyol pathway which initiates a cascade of biochemical alterations that slowly progress to cell dysfunction and structural damage. While the role of AR in the pathogenesis of diabetic complications is well documented, its physiologic role, if any, under normal glycemic conditions is still unknown.


Aldose Reductase Polyol Pathway Aldose Reductase Inhibitor Slot Blot Glomerular Endothelial Cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bagnasco, S.M., Uchida, S., Balaban, R.S., Kador, P.F. and Burg, M.B., 1987, Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl. Proc. Natl. Acad. Sci., 84:1718.PubMedCrossRefGoogle Scholar
  2. Bedford, J.J., Bagnasco, S.M., Kador, P.F., Harris, H.W., Jr. and Burg, M.B., 1987, Characterization and purification of a mammalian osmoregulatory protein, aldose reductase, induced in renal medullary cells by high extracellular NaCl. J. Biol. Chem., 262:14255.PubMedGoogle Scholar
  3. Boulton, A.J.M., Atiea, J., De Leeuw, LH., Lemkes, H., MacLeod, A.F., acRury, S., Scarpello, J.H.B., Somers, G., Tattersall, R.B. and Van Der Veen, E.A., 1989, The efficacy and safety of the aldose reductase inhibitor tolrestat in the treatment of chronic sensorimotor diabetic neuropathy. Diabetologia, 32:469A.Google Scholar
  4. Bowes, C., van Veen, T. and Farber, D.B., 1988, Opsin, G-protein and 48-kDa protein in normal and rd mouse retinas: developmental expression of mRNAs and proteins and light/dark cycling of mRNAs. Exp. Eye Res., 47:369.PubMedCrossRefGoogle Scholar
  5. Burg, M., 1988, Role of aldose reductase and sorbitol in maintaining the medullary intracellular milieu. Kidney Inter., 33:635.CrossRefGoogle Scholar
  6. Carper, D., Nishimura, C., Shinohara, T., Dietzchold, B., Wistow, G.,Google Scholar
  7. Craft, C., Kador, P., and Kinoshita, J.H., 1987, Aldose reductase and p-crystalline belong to the same superfamily as aldehyde reductase. FEBS Lett., 220:209.PubMedCrossRefGoogle Scholar
  8. Chirgwin, J.M., Prybyla, A.E., MacDonald, R.J. and Rutter, W.J., 1986, Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochem., 18:5294.Google Scholar
  9. Davis, L.G., Dibner, M.D. and Battey, J.F., 1986, Formaldehyde gel for electrophoretic separation of RNA and Northern blot, in: Basic Methods in Molecular Biology. Elsevier Science Publ. Co., Inc., New York, 143–146.Google Scholar
  10. Dvornik, D., 1987, Aldose Reductase Inhibition: an Approach to the prevention of diabetic Complications. McGraw Hill, New York, pp368.Google Scholar
  11. Garcia-Perez, A., Martin, B., Murphy, H.R., Uchida, S., Murer, H., Cowley, B.D., Handler, J.S. and Burg, M.B., 1989, Molecular cloning of cDNA coding for kidney aldose reductase. J. Bio. Chem., 264:16815.Google Scholar
  12. Grunewald, R.W. and Kinne, R.K.H., 1989, Intracellular sorbitol ontent in isolated rat inner medullary collecting duct cells. Pflugers Arch., 414:178.PubMedCrossRefGoogle Scholar
  13. Guerrant, G.O. and Moss, C.W., 1984, Determination of monosaccharides as aldononitrile o-methyloxime, alditol and cyclitol acetate derivatives by gas chromatography. Anal. Chem., 56:633.CrossRefGoogle Scholar
  14. Harper, P.A., Robinson, J.M., Hoover, R.L., Wright, T.C. and Karnovsky, M.J., 1984, Improved methods for culturing rat glomerular cells. Kidney Inter., 26:875.CrossRefGoogle Scholar
  15. Kador, P.F., Akagi, Y., Terubayashi, H., Wymen, M., Kinoshita, J.H., 1988, Prevention of pericyte ghost formation in retinal capillaries of galactose fed dogs by aldose reductase inhibitors. Arch. Ophthalmol., 106:1099.PubMedCrossRefGoogle Scholar
  16. Kaneko, M., Carper, D., Nishimura, C., Milien, J., Bock, M., and Hohman, T.C., 1990, Induction of aldose reductase expression in rat kidney mesangial cells and Chinese hamster ovary cells under hypertonic conditions. Exp. Cell Res., 188:135.PubMedCrossRefGoogle Scholar
  17. Law, R.O. and Turner, D.P.J., 1987, Are ninhydrin-positive substances volume-regulatory osmolytes in rat renal papillary cells. J. Physiol., 386:45.PubMedGoogle Scholar
  18. McCaleb, M.L., Sredy, J. Milien, J., Ackerman, D.M., Dvornik, D., 1988, Prevention of urinary albumin excretion in 6 month streptozocin-diabetic rats with the aldose reductase inhibitor tolrestat. J. Diab. Compl., 2:16.Google Scholar
  19. Moriyama, T., Garcia-Perez, A. and Burg, M.B., 1989, Osmotic regulation of aldose reductase protein synthesis in renal medullary cells. J. Biol. Chem., 264:16810.PubMedGoogle Scholar
  20. Mosmann, T., 1983, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65:55.PubMedCrossRefGoogle Scholar
  21. Nishimura, C., Graham, C., Hohman, T.C., Nagata, M., Robison, W.G., Jr. and Carper, D., 1988, Characterization of mRNA and genes for aldose reductase in rat. Biochem. Biophys. Res. Commun., 153:1051.PubMedCrossRefGoogle Scholar
  22. Notvest, R.R. and Inserra, J.J., 1987, Tolrestat, an aldose reductase inhibitor, prevents nerve dysfunction in conscious rats. Diabetes, 36:500.PubMedCrossRefGoogle Scholar
  23. Peterson, G.L., 1977, A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem., 83:346.PubMedCrossRefGoogle Scholar
  24. Robison, W.G., Jr., Nagata, M., Laver, N., Hohman, T.C and Kinoshita, J.H., 1989, Diabetic-like retinopathy in rats prevented with an aldose reductase inhibitor. Invest. Ophthalmol. Vis. Sei., 30:2285.Google Scholar
  25. Sima, A.A.F., Bril, V., Nathaniel, V., McEwen, T.A.J., Brown, M.B., Lattimer, S.A., and Greene, D.A., 1988, Regeneration and repair of myelinated fibers in sural-nerve biopsy specimens from patients with diabetic neuropathy treated with sorbinil. New Engl. J. Med., 319:548.PubMedCrossRefGoogle Scholar
  26. Vota, J.C., Via, D.P., Butterfield, C.E. and Zetter, B.R., 1984, Identification and isolation of endothelial cells based on their increased uptake of acetylated low-density lipoprotein. J. Cell Biol., 99:2034.CrossRefGoogle Scholar
  27. Wirthensohn, G., Lefrank, S., Schmolke, M. and Guder, W.G., 1989, Regulation of organic osmolyte concentrations in tubules from rat renal inner medulla. American J. Physiol., 256:F128.Google Scholar
  28. Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D. and Somero, G.N., 1982, Living with water stress: evolution of osmolyte systems, Science, 217:1214.PubMedCrossRefGoogle Scholar
  29. Yancey, P.H., Burg, M.B. and Bagnasco, S.M., 1990, Effects of NaCl, lucose, and aldose reductase inhibitors on cloning efficiency of enal medullary cells. American J. Physiol., 258:C156.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Thomas C. Hohman
    • 1
  • Deborah Carper
    • 2
  • Sarmila Dasgupta
    • 2
  • Masayuki Kaneko
    • 2
  1. 1.Wyeth-Ayerst Laboratory, CN 8000PrincetonUSA
  2. 2.National Eye InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations