A Paradigm for Aldehyde Oxidation: Histidinol Dehydrogenase

  • Charles Grubmeyer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 284)


Histidinol dehydrogenase (HDH, EC catalyzes the oxidation of histidinol to histidine, using two moles of NAD. The reaction is the final step in the biosynthesis of histidine in bacteria, plants, and fungi. The enzyme is of particular interest in what it can tell us about dehydrogenase action: the reaction contains both alcohol and aldehyde dehydrogenase steps, apparently occurring at a single active site. Two other enzymes, UDP-glucose dehydrogenase (UDPGDH, EC and hydroxymethyl glutaryl CoA reductase (HMGR, EC catalyze conceptually similar 4-electron oxidations. Although the latter two have important roles in health and disease, for the enzymologist HDH offers the advantage of a long and interesting genetic history, and is particularly well suited to molecular approaches.


Transition State Structure Hydride Transfer Uridine Diphosphate Glucose Single Active Site Histidine Operon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, E. (1955) L-Histidinal, a biosynthetic precursor of histidine. J. Biol. Chem. 217, 325–344.PubMedGoogle Scholar
  2. Bitar, K. G., Firca, J. R., and Loper, J. C. (1977) Histidinol dehydrogenase from Salmonella typhimuriumand Escherichia coli. Purification, some characteristics and the amino acid sequence around a reactive thiol group. Biochim. Biophys. Acta 493, 429–440.PubMedGoogle Scholar
  3. Burger, E., and Gorisch, H. (1981a) Patterns of product inhibition of a bifunctional dehydrogenase; L-histidinol:NAD+ oxidoreductase. Eur. J. Biochem. 116, 137–142.PubMedCrossRefGoogle Scholar
  4. Burger, E., and Gorisch, H. (1981b) Evidence for an essential lysine at the active site of L-histidinol:NAD+ oxidoreductase; a bifunctional dehydrogenase. Eur. J. Biochem. 118, 125–130.PubMedCrossRefGoogle Scholar
  5. Burger, E., Gorisch, H., and Lingens, F. (1979) The catalytically active form of histidinol dehydrogenase from Salmonella typhimurium. Biochem. J. 181, 771–774.PubMedGoogle Scholar
  6. Carlomagno, M. S., Chiariotti, L., Alifano, P., Nappo, A. G.,&Bruni, C. (1988) Structure and function of the Salmonella typhimuriumand Escherichia coliK-12 histidine Operons. J. Mol. Biol. 203, 585–606.PubMedCrossRefGoogle Scholar
  7. Cook, P. F.,&Bertagnolli, B. L. (1986) Kinetics of pyridine nucleotide-utilizing enzymes, in: Pyridine Nucleotide Coenzymes (Dolphin, D., Avramovic, O,&Poulsen, R., eds.) Part A, pp 405–447. Wiley, New York.Google Scholar
  8. Donahue, T. F., Farabaugh, P. J.,&Fink, G. R. (1982) The nucleotide sequence of the HIS4region of yeast. Gene 18, 47–59.PubMedCrossRefGoogle Scholar
  9. Dutler, H., Ambar, A.,&Donatsch, J. (1986) Function of zinc in liver alcohol dehydrogenase, in: Zinc Enzymes (Bertini, I., Luchinat, C., Maret, W.,&Zeppezauer, M., eds.) Birkhauser, Boston, pp 471–483Google Scholar
  10. Eccleston, E. D., Thayer, M. L.,&Kirkwood, S. (1979) Mechanisms of action of histidinol dehydrogenase and UDP-Glc dehydrogenase: evidence that the half-reactions proceed on separate subunits. J. Biol. Chem. 254, 11399–11404.PubMedGoogle Scholar
  11. Franzen, B., Carrubba, C., Feingold, D. S., Ashcom, J.,&Franzen, J. S. (1981) Amino acid sequence of the tryptic peptide containing the catalytic-site thiol group of bovine liver uridine diphosphate glucose dehydrogenase. Biochem. J. 199, 599–602.PubMedGoogle Scholar
  12. Gorisch, H.,&Holke, W. (1985) Binding of histidinal to histidinol dehydrogenase. Eur. J. Biochem. 150, 305–308.PubMedCrossRefGoogle Scholar
  13. Greeb, J., Atkins, J. F.,&Loper, J. C. (1971) Histidinol dehydrogenase (hisD)mutants of Salmonella typhimurium. J. Bacteriol. 106, 421–431.PubMedGoogle Scholar
  14. Grubmeyer, C., Chu, K W.,&Insinga, S. (1987) Kinetic mechanism of histidinol dehydrogenase: histidinol binding and exchange reactions. Biochemistry, 26, 3369–3373.PubMedCrossRefGoogle Scholar
  15. Grubmeyer, C. T., and Gray, W. R. (1986) A cysteine residue (cysteine-116) in the histidinol binding site of histidinol dehydrogenase. Biochemistry 25, 4778–4784.PubMedCrossRefGoogle Scholar
  16. Grubmeyer, C. T., and Insinga, S. (1990) Histidinol dehydrogenase: 18O isotope shift in 13C NMR reveals origin of histidine oxygens. J. Am. Chem. Soc. (in press).Google Scholar
  17. Grubmeyer, C., Insinga, S., Bhatia, M.,&Moazami, N. (1989a) Salmonella typhimuriumhistidinol dehydrogenase: complete reaction stereochemistry and active site mapping. Biochemistry 28, 8174–8180.PubMedCrossRefGoogle Scholar
  18. Grubmeyer, C., Skiadopoulos, M., and Senior, A. E. (1989b) L-Histidinol dehydrogenase, a Zn2+-metalloenzyme. Arch. Biochem. Biophys. 272, 311–317.PubMedCrossRefGoogle Scholar
  19. Hermes, J. D., Morrical, S. W., O’Leary, M. H., and Cleland, W. W. (1984) Variation of transition-state structure as a function of the nucleotide in reactions catalyzed by dehydrogenases. 2. Formate dehydrogenase. Biochemistry 23, 5479–5488.PubMedCrossRefGoogle Scholar
  20. Jones, J. B., and Taylor, K. E. (1976) Nicotinamide coenzyme regeneration. Flavin mononucleotide (riboflavin phosphate) as an efficient, economical, and enzyme compatible recycling agent. Can J. Chem. 54, 2969–2973.CrossRefGoogle Scholar
  21. Kohno, T.,&Gray, W. R. (1981) Chemical and genetic studies on L-histidinol dehydrogenase of Salmonella typhimurium:isolation and structure of the tryptic peptides. J. Mol. Biol. 147, 451–464.PubMedCrossRefGoogle Scholar
  22. Lai, C. Y., Tchola, O., Cheng, T., and Horecker, B. L. (1965) The mechanism of action of aldolases. VIII. The number of combining sites in fructose diphosphate aldolase. J. Biol. Chem. 240, 1347–1355.PubMedGoogle Scholar
  23. Lee, S.-Y, and Grubmeyer, C. T. (1987) Purification and in vitro complementation of mutant histidinol dehydrogenases. J. Bacteriol. 169, 3938–3944.PubMedGoogle Scholar
  24. Loper, J. C.,&Adams, E. (1965) Purification and properties of histidinol dehydrogenase from Salmonella typhimurium. J. Biol. Chem. 240, 788–795.PubMedGoogle Scholar
  25. Luskey, K. L.&Stevens, B. (1985) Human 3-hydroxy-3-methylglutaryl coenzyme A reductase: conserved domains responsible for catalytic activity and sterol regulated degradation. J. Biol. Chem. 260, 10271–10277.PubMedGoogle Scholar
  26. Model, P., Ponticorvo, L., and Rittenberg, D. (1968) Catalysis of an oxygen-exchange reaction of fructose 1,6-diphosphate and fructose 1-phosphate with water by rabbit muscle aldolase. Biochemistry 7, 1339–1347.PubMedCrossRefGoogle Scholar
  27. Ordman, A. B., and Kirkwood, S. (1977) Mechanism of action of uridine diphosphoglucose dehydrogenase: evidence for an essential lysine residue at the active site. J. Biol. Chem. 252, 1320–1326.PubMedGoogle Scholar
  28. Ridley, W. P., and Kirkwood, S. (1975) The stereospecificity of hydrogen abstraction by uridine diphosphoglucose dehydrogenase. Biochem. Biophys. Res. Commun. 54, 955–960.CrossRefGoogle Scholar
  29. Ridley, W. P., Houchins, J. P., and Kirkwood, S. (1975) Mechanism of action of uridine diphosphoglucose dehydrogenase: evidence for a second reversible dehydrogenation step involving an essential thiol group. J. Biol. Chem. 250, 8761–8767.PubMedGoogle Scholar
  30. Rogers, D. H., Panini, S. R., and Rudney, H. (1983) Properties of HMGCoA reductase and its mechanism of action, in: 3-Hydroxy-3-methylglutaryl CoA Reductase (Sabine, J. R., Ed.) pp 57–75, CRC PRess Cleveland.Google Scholar
  31. Scharschmidt, M., Fisher, M. A., and Cleland, W. W. (1984) Variation of transition state structure as a function of the nucleotide in reactions catalyzed by dehydrogenases. 1. Liver alcohol dehydrogenase with benzyl alcohol and yeast aldehyde dehydrogenase with benzaldehyde. Biochemistry 23, 5471–5478.PubMedCrossRefGoogle Scholar
  32. Sherban, D. G., Kennelly, P. J., Brandt, K. G.,&Rodwell, V. W. (1985) Rat liver 3 hydroxy-3-methylglutaryl-CoA reductase: catalysis of the reverse reaction and two half-reactions. J. Biol. Chem. 260, 12579–12585.PubMedGoogle Scholar
  33. Yourno, J., and Ino, I. (1968) Purification and crystallization of histidinol dehydrogenase from Salmonella typhimuriumLT-2. J. Biol. Chem. 242, 3273–3276.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Charles Grubmeyer
    • 1
  1. 1.Department of BiologyNew York UniversityNew YorkUSA

Personalised recommendations