The Optical Kerr Effect in Fibers

  • Bruno Crosignani
  • Paolo Di Porto
  • Emanuele Caglioti
Part of the NATO ASI Series book series (NSSB, volume 247)


It has become evident in the last ten years that a single-mode fiber constitutes the ideal medium for observing nonlinear optical effects in silica, in that it is able to provide an almost lossless diffraction-free long interaction medium over a wide range of wavelengths. This circumstance, besides allowing one to perform with relative ease nonlinear optics experiments which would have otherwise required, in bulk media, the use of high-intensity laser sources, has offered to people working in the field of telecommunications the possibility of conceiving new kinds of optical devices (and has been, sometimes, a source of detrimental side effects).


Soliton Solution Nonlinear Refractive Index Nonlinear Propagation Chromatic Dispersion Nonlinear Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Crosignani, P. Di Porto, and A. Yariv, “Coupled-mode theory and slowly varying approximation in guided-wave optics”, submitted for publication in Opt. Commun.Google Scholar
  2. 2.
    H. Kogelnik, “Theory of dielectric waveguides” in Integrated Optics, T. Tamir ed. (Springer-Verlag, Berlin, 1979).Google Scholar
  3. 3.
    A. Owyoung, “The origins of the nonlinear refractive indices of liquids and glasses”, Ph.D. Thesis (California Institute of Technology, 1971, unpublished).Google Scholar
  4. 4.
    B. Crosignani, A. Cutolo, and P. Di Porto, “Coupled-mode theory of nonlinear propagation in multimode and single-mode fibers: envelope solitons and self-confinement”, J. Opt. Soc. Am. 72, 1136 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    B. Crosignani and A. Yariv, “Nonlinear interaction of copropagating and counterpropagat-ing waves in straight and highly twisted single-mode fibers”, J. Opt. Soc. Am. B 5, 507 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers”, Appl. Opt. 18, 2241 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide”, IEEE J. Quantum Electron. QE-23, 510 (1987).ADSCrossRefGoogle Scholar
  8. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 1989).Google Scholar
  9. 8.
    E. Caglioti, B. Crosignani, and P. Di Porto, “Hamiltonian description of nonlinear propagation in optical fibers”, Phys. Rev. A 38, 4036 (1988).ADSCrossRefGoogle Scholar
  10. E. Caglioti. B. Crosignani, P. Di Porto, S. Trillo, and S. Wabnitz, “Finite dimensional description of nonlinear pulse propagation in optical fibers with applications to soliton switching”, J. Opt. Soc. Am. B 7, 374 (1990).ADSCrossRefGoogle Scholar
  11. 9.
    See, e.g., H. Goldstein, Classical Mechanics (2nd edition, Addison-Wesley, 1980).Google Scholar
  12. 10.
    D. Anderson, “Variational approach to nonlinear pulse propagation in optical fibers”, Phys. Rev. A 27, 3135 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Bruno Crosignani
    • 1
  • Paolo Di Porto
    • 2
  • Emanuele Caglioti
    • 3
  1. 1.Dipartimento di FisicaUniversita’ dell’AquilaL’AquilaItaly
  2. 2.Fondazione Ugo BordoniRomaItaly
  3. 3.Dipartimento di FisicaUniversita’ di RomaRomaItaly

Personalised recommendations