Advertisement

Nonlinear Waves in Ferromagnetic Films

  • A. D. Boardman
  • Yu. V. Gulyaev
  • S. A. Nikitov
  • Wang Qi
Part of the NATO ASI Series book series (NSSB, volume 247)

Abstract

Typically a magnetic material1 may consist of elements from a transition group of the periodic table and involve atoms of Fe, Co, Mn and Ni, for example. The atoms of such elements have unfilled electron shells so that an uncompensated magnetic moment can arise from the spin of the electrons. If the permeability of a substance is less than unity, so that its magnetic susceptibility is negative, then it is said to be diamagnetic. The opposite situation of positive susceptibility is of interest here, since this feature characterises paramagnetic and other very interesting magnetic media. Broadly speaking, if only a small concentration of magnetic ions exists then the magnetic materials are known as paramagnets. Ordinary paramagnetic substances have permeabilities close to unity but the transition elements give rise to substantial values. In paramagnetic materials, however, the magnetic ions are practically independent of each other. The orientation of the magnetic moments of these ions is chaotic, with the average moment of the whole volume being equal to zero.

Keywords

Spin Wave Modulational Instability Threshold Power Magnetic Film Spatial Soliton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Kittel, Introduction to Solid State Physics (John Wiley and Sons, 1976).Google Scholar
  2. 2.
    M. S. Sodha and N. C. Srivastrava, Microwave Propagation in Ferrimagnetics (Plenum Press, 1981).Google Scholar
  3. 3.
    R. W. Damon and J. R. Eshbach, J. Phys. Chem. Solid 19, 308 (1961).ADSCrossRefGoogle Scholar
  4. 4.
    A. G. Gurevich, Ferrites at Microwave Frequencies (Heywood and Company, London, 1963).Google Scholar
  5. 5.
    M. Sparks, Ferromagnetic Relaxation Theory (McGraw-Hill, 1964).Google Scholar
  6. 6.
    F. R. Morgenthaler, Proc. IEEE 76, 138 (1988).ADSCrossRefGoogle Scholar
  7. 7.
    W. Schilz, Philips Research Reports 28, 50 (1973).Google Scholar
  8. 8.
    T. Yukawa, J. Ikenoue, S. Yamada and K. Abe, J. Appl. Phys. 16, 2187 (1977).CrossRefGoogle Scholar
  9. T. Yukawa, J. Ikenoue, S. Yamada and K. Abe, J. Appl. Phys. 49, 346 (1978).ADSCrossRefGoogle Scholar
  10. 9.
    R. E. De Wames and T. Wolfram, J. Appl. Phys. 41, 5243 (1976).CrossRefGoogle Scholar
  11. 10.
    M. Sparks, Phys. Rev. B 1, 3831 (1970).ADSCrossRefGoogle Scholar
  12. 11.
    R. M. White, Quantum Theory of Magnetism (McGraw-Hill, 1970).Google Scholar
  13. 12.
    V. E. Zakharov, V. S. Lvov and S. S. Starobinets, Sov. Phys. Solid State 11, 2368 (1970).Google Scholar
  14. 13.
    V. E. Zakharov, Sov. Phys. JETP 24, 740 (1967).ADSGoogle Scholar
  15. 14.
    H. Suhl, J. Phys. Chem. Solids 1, 209 (1957).ADSCrossRefGoogle Scholar
  16. 15.
    H. Suhl, Proc. IRE 44, 1270 (1956).CrossRefGoogle Scholar
  17. 16.
    G. B. Whitham, Linear and Nonlinear Waves (John Wiley and Sons, New York, 1974).MATHGoogle Scholar
  18. 17.
    V. I. Karpman, Nonlinear Waves in Dispersive Media (Pergamon Press, Oxford, 1974).Google Scholar
  19. 18.
    A. G. Temiryazev, Sov. Phys. Solid State 29, 179 (1987).Google Scholar
  20. 19.
    P. E. Zilberman, S. A. Nikitov and A. G. Temiryazev, JETP Lett. 42, 110 (1985).ADSGoogle Scholar
  21. 20.
    A. D. Boardman and S. A. Nikitov, Phys. Rev. B 38, 1144 (1988).ADSCrossRefGoogle Scholar
  22. 21.
    W. S. Ishak, Proc. IEEE 76, 171 (1988).ADSCrossRefGoogle Scholar
  23. 22.
    A. D. Boardman, S. A. Nikitov, T. P. Shen and Wang Qi, Phys. Rev. (to be published).Google Scholar
  24. 23.
    C. Kittel, Quantum Theory of Solids (John Wiley and Sons, New York, 1963).Google Scholar
  25. 24.
    J. L. Powell and B. Crasemann, Quantum Mechanics (Addison-Wesley, London, 1961).MATHGoogle Scholar
  26. 25.
    T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).ADSMATHCrossRefGoogle Scholar
  27. 26.
    B. L. Moiseiwitsch, Variational Principles (Interscience Publishers, 1966).Google Scholar
  28. 27.
    A. M. Mednikov, Sov. Phys. Solid State 23, 136 (1981).Google Scholar
  29. 28.
    Yu. V. Gulyaev, P. E. Zilberman, S. A. Nikitov and A. G. Temiryazev, Sov. Phys. Solid State 28, 1553 (1986).Google Scholar
  30. Yu. V. Gulyaev, P. E. Zilberman, S. A. Nikitov and A. G. Temiryazev, Sov. Phys. Solid State 29, 1031 (1987).Google Scholar
  31. 29.
    A. D. Boardman, G. S. Cooper, A. A. Maradudin and T. P. Shen, Phys. Rev. B 34, 8273 (1986).ADSCrossRefGoogle Scholar
  32. 30.
    A. D. Boardman, Yu. V. Gulyaev and S. A. Nikitov, Sov. Phys. JETP, 95, 2150 (1989).Google Scholar
  33. 31.
    A. D. Boardman and S. A. Nikitov, Sov. Phys. Solid State 31, 568 (1989).Google Scholar
  34. 32.
    A. G. Temiryazev, JETP Lett. 50, 228 (1989).ADSGoogle Scholar
  35. 33.
    P. De Gasperis, R. Marcelli and G. Miccoli, Phys. Rev. Lett. 59, 481 (1987).ADSCrossRefGoogle Scholar
  36. 34.
    B. A. Kalinikos, N. G. Kovshikov and A. N. Slavin, Sov. Tech. Phys. Lett 10, 392 (1984).Google Scholar
  37. 35.
    B. A. Kalinikos, N. G. Kovshikov and A. N. Slavin, JETP Lett. 38, 414 (1983).ADSGoogle Scholar
  38. B. A. Kalinikos, N. G. Kovshikov and A. N. Slavin, Sov. Phys. Solid State 27, 135 (1985).Google Scholar
  39. B. A. Kalinikos, N. G. Kovshikov and A. N. Slavin, JETP 67, 138 (1988).Google Scholar
  40. 36.
    B. A. Kalinikos and A. N. Slavin, Sov. Phys. Solid State 26, 2077 (1984).Google Scholar
  41. 37.
    A. K. Zvezdin and A. F. Popkov, Sov. Phys. JETP 84, 350 (1982).Google Scholar
  42. 38.
    Yu. V. Gulyaev, S. A. Nikitov, V. P. Plessky, Sov. Phys. Solid State, 23, 1321 (1981).Google Scholar
  43. 39.
    A. D. Boardman, S. A. Nikitov and Wang Qi, Phys. Rev. (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • A. D. Boardman
    • 1
  • Yu. V. Gulyaev
    • 2
  • S. A. Nikitov
    • 2
  • Wang Qi
    • 3
  1. 1.Department of PhysicsUniversity of SalfordSalfordUK
  2. 2.Institute of Radioengineering and ElectronicsUSSR Academy of SciencesMoscow, CentreUSSR
  3. 3.Department of PhysicsShanghai University of Science and TechnologyShanghaiChina

Personalised recommendations