Advertisement

Nonlinear Surface Acoustic Waves on Homogeneous Media

  • D. F. Parker
Part of the NATO ASI Series book series (NSSB, volume 247)

Abstract

This chapter on the theoretical treatment of nonlinear elastic and piezoelectric surface waves will concentrate on those features which distinguish waves on a homogeneous half-space from other guided nonlinear waves. These differences arise principally because the linear theory of such waves predicts no dispersion, so that all frequencies and wavelengths travel at the same speed. This allows ample time for nonlinear interactions to reinforce each other constructively. Except in special cases, attention should not be confined to interactions between just a small number of modes. Although derivation of approximate nonlinear evolution equations is based on multiple-scale asymptotics (as in many other contributions in these proceedings) the derivation procedure is not a formal expansion procedure. It is one which has been found useful not just in the present context of surface acoustic waves, but also in treatments of nonlinear fibre optics.

Keywords

Evolution Equation Surface Wave Rayleigh Wave Partial Wave Surface Acoustic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. F. Parker, Int. J. Engng. Sci. 26, 59 (1988).MATHCrossRefGoogle Scholar
  2. 2.
    G. W. Farnell and E. L. Adler, in Physical Acoustics IX, W. P. Mason and R. N. Thurs-ton, eds. (Academic Press, New York, 1972).Google Scholar
  3. 3.
    D. M. Barnett and J. Lothe, Physica Norvegica 3, 13 (1973).Google Scholar
  4. D. M. Barnett and J. Lothe, J. Phys. F 4, 671 (1974).ADSCrossRefGoogle Scholar
  5. P. Chadwick and G. D. Smith, Advances in Appl. Mech. 17, 303 (1977).MATHCrossRefGoogle Scholar
  6. V. I. Al’shits and J. Lothe, Soviet Phys. Crystallogr. 23, 509 (1978).Google Scholar
  7. P. Chadwick, Proc. Roy. Soc. Lond. A 401, 203 (1985).MathSciNetADSMATHCrossRefGoogle Scholar
  8. P. Chadwick and T.C.T. Ting, Quart. Appl. Math. 45, 419 (1987).MathSciNetMATHGoogle Scholar
  9. 4.
    A. N. Stroh, J. Math. Phys. 41, 77 (1962).MathSciNetMATHGoogle Scholar
  10. 5.
    J. D. Achenbach, Wave Propagation in Elastic Solids (North-Holland, Amsterdam, 1973).MATHGoogle Scholar
  11. 6.
    A. A. Maradudin and A. P. Mayer, these proceedings.Google Scholar
  12. 7.
    R. W. Lardner, Int. J. Engng. Sci. 21, 1331 (1983).MathSciNetMATHCrossRefGoogle Scholar
  13. 8.
    A. P. Harvey, R. E. Craine and S. Syngellakis, in Recent Developments in Surface Acoustic Waves, D. F. Parker and G. A. Maugin, eds. (Springer-Verlag, Berlin-Heidelberg, 1988).Google Scholar
  14. 9.
    G. B. Whitham, Proc. Roy. Soc. Lond. A 283, 238 (1965).MathSciNetADSMATHCrossRefGoogle Scholar
  15. J. C. Luke, Proc. Roy. Soc. Lond. A 292, 403 (1966).MathSciNetADSMATHCrossRefGoogle Scholar
  16. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974).MATHGoogle Scholar
  17. 10.
    N. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965).ADSMATHCrossRefGoogle Scholar
  18. C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Phys. Rev. Lett. 19, 1095 (1967).ADSMATHCrossRefGoogle Scholar
  19. R. K. Dodd, J. C. Eilbeck J. D. Gibbon and P. Morris, Solitons and Nonlinear Wave Equations (Academic, London, 1982).MATHGoogle Scholar
  20. 11.
    D. F. Parker and F. M. Talbot, in Nonlinear Deformation Waves, U. Nigul and J. Engelbrecht, eds. (Springer, Berlin-Heidelberg, 1983).Google Scholar
  21. 12.
    D. F. Parker and F. M. Talbot, J. Elast. 15, 389 (1985).MathSciNetMATHCrossRefGoogle Scholar
  22. 13.
    E. A. David and D. F. Parker, in Recent Developments in Surface Acoustic Waves, D. F. Parker and G. A. Maugin, eds. (Springer-Verlag, Berlin-Heidelberg, 1988).Google Scholar
  23. 14.
    D. F. Parker, Physica 16D, 385 (1985).ADSGoogle Scholar
  24. D. F. Parker, in Waves and Stability in Continuous Media, M. Maiellaro and L. Palese, eds. (Atti del III Meeting, Bari, 1989).Google Scholar
  25. 15.
    E. A. David and D. F. Parker, to appear in Wave Motion.Google Scholar
  26. 16.
    J. K. Hunter, in Current Progress in Hyperbolic Systems, Riemann Problems and Computations, W. B. Lindquist, ed. (Am. Math. Soc, 1989).Google Scholar
  27. 17.
    S. Fubini-Ghiron, Alta Frequenza 4, 530 (1935).Google Scholar
  28. see e.g. R. T. Beyer, in Physical Acoustics Vol IIB, W. P. Mason, ed. (Academic, New York, 1965).Google Scholar
  29. 18.
    G. Bleustein, Appl. Phys. Lett. 13, 412 (1968).ADSCrossRefGoogle Scholar
  30. Yu. V. Gulyaev, Soviet Phys. JETP Lett. 9, 37 (1969).ADSGoogle Scholar
  31. 19.
    G. A. Maugin, Nonlinear Electromechanical Effects and Applications (World Scientific, Singapore, 1985).Google Scholar
  32. 20.
    D. F. Parker and E. A. David, Int. J. Engng. Sci. 27, 565 (1989).MATHCrossRefGoogle Scholar
  33. 21.
    H. F. Tiersten and J. C. Baumhauer, J. Appl. Phys. 45, 4272 (1974).ADSCrossRefGoogle Scholar
  34. H. F. Tiersten and J. C. Baumhauer, J. Appl. Phys. 58, 1867 (1985).ADSCrossRefGoogle Scholar
  35. 22.
    A. N. Abd-Alla and G. A. Maugin, J. Acoust. Soc. Am. 82, 1746 (1987).ADSCrossRefGoogle Scholar
  36. 23.
    G. A. Maugin and A. Hakmi, J. Acoust. Soc. Am. 76, 826 (1984).ADSMATHCrossRefGoogle Scholar
  37. A. N. Abd-Alla and G. A. Maugin, in Recent Developments in Surface Acoustic Waves, D. F. Parker and G. A. Maugin, eds. (Springer-Verlag, Berlin-Heidelberg, 1988).Google Scholar
  38. A. N. Abd-Alla, Ph.D. Thesis, University of Assiut, Egypt (1988).Google Scholar
  39. 24.
    A. P. Harvey and G. E. Tupholme, submitted to Int. J. Engng. Sci. A. P. Harvey, Ph.D. Thesis, University of Southampton (1990).Google Scholar
  40. 25.
    C. Maerfeld, in Rayleigh Wave Theory and Applications, E. A. Ash and E. G. S. Paige, eds. (Springer-Verlag, Berlin-Heidelberg, 1985).Google Scholar
  41. H. P. Grassl, L. Reindl and H.-W. Worz, in Recent Developments in Surface Acoustic Waves, D. F. Parker and G. A. Maugin, eds. (Springer-Verlag, Berlin-Heidelberg, 1988).Google Scholar
  42. 26.
    D. F. Parker and E. A. David, in Elastic Wave Propagation, M.F. McCarthy and M. A. Hayes, eds. (Elsevier, Amsterdam, 1989).Google Scholar
  43. N. Kalyanasundaram, D. F. Parker and E. A. David, to appear in J. Elasticity.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • D. F. Parker
    • 1
  1. 1.Department of Theoretical MechanicsUniversity of NottinghamNottinghamUK

Personalised recommendations