Nonlinear Waves and Switching Effects at Nonlinear Interfaces

  • A. E. Kaplan
  • P. W. Smith
  • W. J. Tomlinson
Part of the NATO ASI Series book series (NSSB, volume 247)


Over the past several years, a new direction has arisen in nonlinear optics, which can be described as self-action at nonlinear interfaces (i.e. an interface between linear and nonlinear transparent media). In the most studied configuration, light is incident from a linear medium (with susceptibility ϵ0) onto the plane surface of a nonlinear medium with a nonlinear refractive index (Fig. 1). The studies of such an interface have followed an almost classical progression of alternating theoretical and experimental advances, which have resulted in an increasingly detailed understanding of the behavior, features, and limitations of nonlinear interfaces, and which have brought into focus the remaining unsolved problems.


Plane Wave Nonlinear Medium Total Internal Reflection Optical Bistability Input Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A E Kaplan, JETP Lett. 24, 114 (1976).ADSGoogle Scholar
  2. 2.
    A E Kaplan, Sov. Phys. JETP 45, 896 (1977).Google Scholar
  3. 3.
    A E Kaplan, Sov. J. Quantum. Electron. 8, 95 (1978).CrossRefGoogle Scholar
  4. 4.
    A E Kaplan, Radiophys. Quantum Electron. 22, 229 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    A E Kaplan, IEEE J. Quantum Electron. QE-17, 336 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    A E Kaplan in Optical Bistability, C W Bowden, M Ciftan and M R Robl eds. (Plenum, New York, 1981), p. 447.CrossRefGoogle Scholar
  7. 7.
    P W Smith, J-P Hermann, W J Tomlinson and P L Maloney, Appl. Phys. Lett. 35, 846 (1979).ADSCrossRefGoogle Scholar
  8. 8.
    P W Smith, W J Tomlinson, P J Maloney and J-P Hermann, IEEE J. Quantum Electron. QE-17, 340 (1981).ADSCrossRefGoogle Scholar
  9. 9.
    P W Smith and W J Tomlinson, in Optical Bistabilitv, C W Bowden, M Ciftan and M R Robl eds. (Plenum, New York, 1981), p 463.CrossRefGoogle Scholar
  10. 10.
    N N Rosanov, Opt. Spectr. 47, 335 (1979).ADSGoogle Scholar
  11. 11.
    D Marcuse, Appl. Opt. 19, 3130 (1980).ADSCrossRefGoogle Scholar
  12. 12.
    A A Kolokolov and A I Sukov, Radiophys. Quantum Electron. 21, 1013 (1978).ADSCrossRefGoogle Scholar
  13. 13.
    W J Tomlinson, J P Gordon, P W Smith and A E Kaplan, Appl. Opt. 21, 2041 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    W J Tomlinson, Opt. Lett. 5, 323 (1980).ADSCrossRefGoogle Scholar
  15. 15.
    A E Kaplan, J. Opt. Soc. Am. 71, 1640 (1981).ADSCrossRefGoogle Scholar
  16. 16.
    G A Askar’yan, Sov. Phys. JETP 15, 1088 (1962).Google Scholar
  17. 17.
    V I Talanov, Izv. Vuzov. Radiofizika 7, 564 (1964).MATHGoogle Scholar
  18. V I Talanov, JETP Lett. 2, 138 (1965).ADSGoogle Scholar
  19. 18.
    R Chiao, E Garmire and C H Townes, Phys. Rev. Lett. 13, 479 (1964).ADSCrossRefGoogle Scholar
  20. 19.
    P L Kelley, Phys. Rev. Lett. 15, 1005 (1965).ADSCrossRefGoogle Scholar
  21. 20.
    P W Smith and W J Tomlinson, IEEE J. Quantum Electron. QE-20, 30 (1984).ADSCrossRefGoogle Scholar
  22. 21.
    G B Altshuller, V S Ermolaev, K I Krylov, M A Makarov and L I Pavlov, Optics Commun. 56, 131 (1985).ADSCrossRefGoogle Scholar
  23. 22.
    N Bloembergen and D S Pershan, Phys. Rev. 128, 606 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  24. N Bloembergen and J. Ducuing, Phys. Lett. 6, 5 (1963).ADSCrossRefGoogle Scholar
  25. N Bloembergen and C H Lee, Phys. Rev. Lett. 19, 835 (1967).ADSCrossRefGoogle Scholar
  26. 23.
    J J Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems (Interscience, 1950).Google Scholar
  27. A E Kaplan, Yu A Kravtsov and V A Rylov, Parametric Oscillators and Frequency Dividers (Sov. Radio, Moscow, 1966) (in Russian).Google Scholar
  28. 24.
    H M Gibbs, Optical Bistability, (Academic Press, New York, 1985).Google Scholar
  29. 25.
    P W Smith and W J Tomlinson, IEEE Spectrum 18, No. 6, 26 (June, 1981).ADSGoogle Scholar
  30. 26.
    H Seidel, U S Patent No. 3,610,731 (1969).Google Scholar
  31. 27.
    A Szöke, V Daneu, T Goldhar and N A Kurnit, Appl. Phys. Lett. 15, 376 (1969).ADSCrossRefGoogle Scholar
  32. 28.
    H M Gibbs, S L McCall and T N C Venkatesan, Phys. Rev. Lett. 36, 1135 (1976).ADSCrossRefGoogle Scholar
  33. 29.
    F S Felber and J H Marburger, Appl. Phys. Lett. 28, 731 (1976).ADSCrossRefGoogle Scholar
  34. 30.
    T S Dlodlo, Phys. Lett. 84A, 107 (1981).ADSGoogle Scholar
  35. T S Dlodlo, Phys. Rev. A 27, 2 (1983).CrossRefGoogle Scholar
  36. 31.
    R Cuykendall and D R Andersen, Opt. Lett. 12, 542 (1987).ADSCrossRefGoogle Scholar
  37. 32.
    B Bosacchi and L M Narducci, Opt Lett. 8, 324 (1983).ADSCrossRefGoogle Scholar
  38. 33.
    I C Khoo and J Y Hou, J. Opt. Soc. Am. B 2, 761 (1985).ADSCrossRefGoogle Scholar
  39. 34.
    G M Vysin, H J Simon and R T Deck, Opt. Lett. 6, 30 (1981).ADSCrossRefGoogle Scholar
  40. 35.
    P Martinot, A Koster and S Laval, IEEE J. Quantum Electron. QE-21, 1140 (1985).ADSCrossRefGoogle Scholar
  41. 36.
    R K Hickernell and D Sarid, J. Opt. Soc. Am. B 3, 1059 (1986).ADSCrossRefGoogle Scholar
  42. 37.
    M Inoue, Phys. Rev. Lett. 58, 871 (1987).ADSCrossRefGoogle Scholar
  43. 38.
    G Ya. Slepyan, Radio Eng. & Electron. Phys. 8 (1985).Google Scholar
  44. 39.
    G I Stegeman, IEEE Trans. Micr. Theory and Applications MTT-30, 1598 (1982).ADSCrossRefGoogle Scholar
  45. 40.
    C T Seaton, J D Valera, R L Shoemaker, G I Stegeman, J T Chilwell and S D Smith, IEEE J. Quantum Electron. QE-21, 774 (1985).ADSCrossRefGoogle Scholar
  46. 41.
    H Vach, C T Seaton, G I Stegeman and I C Khoo, Opt. Lett. 9, 238 (1984).ADSCrossRefGoogle Scholar
  47. 42.
    N N Rosanov, Sov. Tech. Phys. Lett. 3, 583 (1977).Google Scholar
  48. N N Rosanov, Sov. Tech. Phys. Lett. 4, 30 (1978).Google Scholar
  49. 43.
    V A Permyakov and O V Bagdasaryan, Radiophys. Quantum Electron. 21, 92 (1978).Google Scholar
  50. 44.
    A E Kaplan, Appl. Phys. Lett. 38, 67 (1981).ADSCrossRefGoogle Scholar
  51. 45.
    P W Smith, W J Tomlinson, P J Maloney and A E Kaplan, Opt. Lett. 7, 57 (1982).ADSCrossRefGoogle Scholar
  52. 46.
    B B Boiko, I Z Dzhilavdari and N S Petrov, Appl. Spectr. 23, 1511 (1975).CrossRefGoogle Scholar
  53. 47.
    V S Butylkin, A E Kaplan, Yu. G Khronopulo and E I Yakubovick, Resonant Nonlinear Interactions of Light With Matter, to be published by Springer-Verlag.Google Scholar
  54. 48.
    DAB Miller, S D Smith and B S Wherett, Opt. Commun. 35, 221 (1980).ADSCrossRefGoogle Scholar
  55. 49.
    A E Kaplan, JETP Lett. 9, 33 (1969).ADSGoogle Scholar
  56. 50.
    A E Kaplan, P W Smith and W J Tomlinson, SPIE 317, 305 (1982).ADSGoogle Scholar
  57. 51.
    M J Moran, C-Y She and R L Carmen, IEEE J. Quantum Electron. QE-11, 259 (1975).ADSCrossRefGoogle Scholar
  58. 52.
    A G Litvak and V A Mironov, Izv. Vyssh. Uchehn. Zaved. Radiofiz. 11, 1911 (1968).Google Scholar
  59. 53.
    Yu. R Alanakyan, Sov. Phys. Tech. Phys. 12, 587 (1967).Google Scholar
  60. 54.
    V E Zakharov and A B Shabat, Sov. Phys. JETP 38, 62 (1971).MathSciNetGoogle Scholar
  61. 55.
    Similar multisoliton emission from a nonlinear waveguide has recently been demonstrated in a computer simulation by E M Wright, G I Stegeman, C T Seaton, J V Moloney and A D Boardman, to be published.Google Scholar
  62. 56.
    G Delfino and P Mormile, Opt. Lett. 10, 618 (1985).ADSCrossRefGoogle Scholar
  63. 57.
    H Lotsen, 32, 776, 189, 299, 553 (1970/72).Google Scholar
  64. 58.
    S Friberg and P W Smith, IEEE J. Quantum Electron, (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • A. E. Kaplan
    • 1
  • P. W. Smith
    • 2
  • W. J. Tomlinson
    • 2
  1. 1.Department of Electrical and Computer EngineeringThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Bell Communications ResearchRed BankUSA

Personalised recommendations