Advertisement

Electromagnetic Resonance Induced Nonlinear Optical Phenomena

  • R. Reinisch
  • G. Vitrant
  • M. Nevière
Part of the NATO ASI Series book series (NSSB, volume 247)

Abstract

It is well known that efficient nonlinear optical interactions require strong nonlinear polarizations.1,2 This is achieved by increasing the nonlinear susceptibility and/or the electromagnetic field inside the nonlinear medium. The former requires a material study whereas the latter, in which we are interested, requires an electromagnetic study.

Keywords

Harmonic Generation Pump Beam Nonlinear Medium Resonant Excitation Groove Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bloembergen, Nonlinear optics (Benjamin, New York, 1965).Google Scholar
  2. 2.
    R. Shen, The principles of nonlinear optics (Wiley Interscience, New York, 1984).Google Scholar
  3. 3.
    J. L. Coutaz, M. Nevière, E. Pic and R. Reinisch, Phys. Rev. B 32, 2227 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    J. L. Coutaz, J. Opt. Soc. Am. B 4, 105 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    R. Reinisch and M. Nevière, “Nonlinear surface polariton interactions: surface enhanced nonlinear optical effects” in Electromagnetic Surface Excitations, R. F. Wallis and G. I. Stegeman eds. (Springer Verlag, New York, 1986), pp. 232–260.CrossRefGoogle Scholar
  6. 6.
    J. L. Coutaz, D. Maystre, M. Nevière and R. Reinisch, Proc. 14th Congress of the International Commission for Optics (Québec), pp. 149-150, ICO (1987).Google Scholar
  7. 7.
    M. Nevière, J. L. Coutaz, D. Maystre, E. Pic and R. Reinisch, CLEO’86-IQEC’86 (San Francisco, Sept. 1986), p. 68.Google Scholar
  8. 8.
    D. Maystre, M. Nevière R. Reinisch and J. L. Coutaz, J. Opt. Soc. Am. B 5, 338 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    G. S. Agarwal and S. S. Jha, Phys. Rev. B 26, 482 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    K. Arya, Phys. Rev. B 29, 4451 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    G. A. Farias and A. A. Maradudin, Phys. Rev. B 30, 3002 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    R. Reinisch and M. Nevière, Phys. Rev. B 26, 5987 (1982).ADSCrossRefGoogle Scholar
  13. 13.
    R. Reinisch and M. Nevière, Phys. Rev. B 28, 1870 (1983).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    M. Nevière, R. Reinisch and D. Maystre, Phys. Rev. B 32, 3634 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    M. Nevière, P. Vincent, D. Maystre, R. Reinisch and J. L. Coutaz, J. Opt. Soc. Am. B 5, 330 (1988).ADSCrossRefGoogle Scholar
  16. 16.
    H. Akhouayri, M. Nevière, P. Vincent and R. Reinisch, Proc. 14th Congress of the International Commission for Optics (Québec), pp. 239-240 (1987).Google Scholar
  17. 17.
    R. Reinisch, M. Nevière, H. Akhouayri, J. L. Coutaz, D. Maystre and E. Pic, Opt. Engineering 27, 961 (1988).Google Scholar
  18. 18.
    J. C. Quail and H. J. Simon, J. Opt. Soc. Am. B 5, 325 (1988).ADSCrossRefGoogle Scholar
  19. 19.
    H. J. Simon, C. Huang, J. C. Quail and Z. Chen, Phys. Rev. B 38, 7408 (1988).ADSCrossRefGoogle Scholar
  20. 20.
    Z. Chen and H. J. Simon, Opt. Lett. 13, 1008 (1988).ADSCrossRefGoogle Scholar
  21. 21.
    H. J. Simon and Z. Chen, Phys. Rev. B 39, (1989).Google Scholar
  22. 22.
    R. Reinisch and G. Vitrant, Phys. Rev. B 39, 5775 (1989).ADSCrossRefGoogle Scholar
  23. 23.
    G. I. Stegeman, IEEE J. Quantum Electron. QE-18, 1610 (1982).ADSCrossRefGoogle Scholar
  24. G. I. Stegeman, C. T. Seaton, W. M. Hetherington III, A. D. Boardman and P. Egan, in Electromagnetic Surface Excitations, R. F. Wallis and G. I. Stegeman eds. (Springer-Verlag, New York, 1986), p. 261.CrossRefGoogle Scholar
  25. A. D. Boardman and P. Egan, in Electromagnetic Surface Excitations, R. F. Wallis and G. I. Stegeman eds. (Springer-Verlag, New York, 1986), p. 301.CrossRefGoogle Scholar
  26. R. Reinisch, P. Arlot, G. Vitrant and E. Pic, Appl. Phys. Lett. 47, 1248 (1985).ADSCrossRefGoogle Scholar
  27. 24.
    G. Arfken, Mathematical Methods for Physicists (Academic Press, New York, 1970).Google Scholar
  28. 25.
    L. S. Schwartz, Mathematical Methods for Physical Sciences (Addison-Wesley, Reading, Mass., 1966).Google Scholar
  29. 26.
    R. Petit, “A tutorial introduction” in Electromagnetic Theory of Gratings, R. Petit ed. (Springer-Verlag, New York, 1980), pp. 1–50.CrossRefGoogle Scholar
  30. 27.
    N. Bloembergen, R. K. Chang, S. S. Jha and C. H. Lee, Phys. Rev. 174, 813 (1968).ADSCrossRefGoogle Scholar
  31. 28.
    J. E. Sipe, V. C. Y. So, M. Fukui and G. I. Stegeman, Phys. Rev. B 21, 4389 (1980).ADSCrossRefGoogle Scholar
  32. 29.
    J. E. Sipe and G. I. Stegeman, “Nonlinear optical response of metal surfaces” in Surface polaritons, electromagnetic waves at surfaces and interfaces, V. M. Agranovich and D. L. Mills eds. (North Holland, Amsterdam, 1982), pp. 661–701.Google Scholar
  33. 30.
    D. Maystre, M. Nevière and R. Reinisch, Appl. Phys. A 39, 115 (1986).ADSCrossRefGoogle Scholar
  34. 31.
    H. R. Jensen, K. Pedersen and D. Keller, Proceedings of the Int. Conf. on nonlinear optics NLO’88, Ireland 1988.Google Scholar
  35. 32.
    D. Maystre, “Integral Methods” in Electromagnetic theory of gratings, R. Petit ed. (Springer-Verlag, New York, 1980), pp. 63–100.CrossRefGoogle Scholar
  36. 33.
    D. Maystre, “General study of grating anomalies from electromagnetic surface modes” in Electromagnetic surface modes, A. D. Boardman ed. (Wiley, New York, 1982), pp. 661–724.Google Scholar
  37. 34.
    M. Nevière, P. Vincent and R. Petit, Rev. Optique 5, 65 (1974).CrossRefGoogle Scholar
  38. P. Vincent, “Differential methods” in Electromagnetic theory of gratings, R. Petit ed. (Springer-Verlag, New York, 1980), pp. 101–121.CrossRefGoogle Scholar
  39. 35.
    J. L. Coutaz, D. Maystre, M. Nevière and R. Reinisch, J. Appl. Phys. 62, 1529 (1987).ADSCrossRefGoogle Scholar
  40. 36.
    The characteristics of silver corresponding to all the experiments performed with d = 1.53. üm periodicity gratings lead to: ε2(ω) = −43.6 + 2j; ε2(2ω) = −8.4 + 0.1j. The best fit is obtained for A = 2.9 and B = 0.4245.Google Scholar
  41. 37.
    J. V. Moloney and H. M. Gibbs, Phys. Rev. Lett. 48, 1607 (1982).ADSCrossRefGoogle Scholar
  42. 38.
    J. V. Moloney, M. R. Belie and H. M. Gibbs, Opt. Commun. 41, 379 (1982).ADSCrossRefGoogle Scholar
  43. 39.
    J. V. Moloney, M. Sargent III and H. M. Gibbs, Opt. Commun. 44, 289 (1983).ADSCrossRefGoogle Scholar
  44. 40.
    J. V. Moloney, Opt. Acta 29, 1503 (1982).ADSCrossRefGoogle Scholar
  45. 41.
    E. M. Wright, W. J. Firth and I. Galbraith, J. Opt. Soc. Am. B 2, 383 (1985).ADSCrossRefGoogle Scholar
  46. 42.
    W. J. Firth, I. Galbraith and E. M. Wright, J. Opt. Soc. Am. B 2, 1005 (1985).ADSCrossRefGoogle Scholar
  47. 43.
    N. N. Rozanov, Sov. Phys. JETP 53, 47 (1981).Google Scholar
  48. 44.
    N. N. Rozanov and V. E. Semenov, Opt. Spectrosc. 48, 59 (1980).ADSGoogle Scholar
  49. 45.
    N. N. Rozanov and V. E. Semenov, Opt. Commun. 38, 435 (1981).ADSCrossRefGoogle Scholar
  50. 46.
    N. N. Rozanov, V. E. Semenov and G. V. Khodova, Sov. J. Quantum Electron. 12, 193 and 198 (1982).ADSCrossRefGoogle Scholar
  51. 47.
    D. Weaire, J. P. Kermode and V. M. Dwyer, Opt. Commun. 55, 3 (1985).CrossRefGoogle Scholar
  52. 48.
    D. Weaire and J. P. Kermode, J. Opt. Soc. Am. B 3, 1706 (1986).ADSCrossRefGoogle Scholar
  53. 49.
    U. Olin and O. Sahlén, J. Opt. Soc Am. B 4, 319 (1987).ADSCrossRefGoogle Scholar
  54. 50.
    U. Olin, J. Opt. Soc. Am. B 5, 20 (1988).ADSCrossRefGoogle Scholar
  55. 51.
    G. M. Carter and Y. J. Chen, Appl. Phys. Lett. 42, 643, (1983).ADSCrossRefGoogle Scholar
  56. 52.
    G. Vitrant, P. Arlot and R. Reinisch, SPIE 800, 169 (1987).ADSGoogle Scholar
  57. 53.
    G. I. Stegeman, G. Assanto, R. Zanoni, C. T. Seaton, E. Garmire, A. A. Maradudin, R. Reinisch and G. Vitrant, Appl. Phys. Lett. 52, 869 (1988).ADSCrossRefGoogle Scholar
  58. 54.
    G. Vitrant, R. Reinisch, J. Cl. Paumier, G. Assanto and G. Stegeman, Nonlinear guided wave phenomena: physics and applications, Topical Meeting, p. 167, (Houston, USA) (1989).Google Scholar
  59. 55.
    H. M. Gibbs, Controlling light with light (Academic Press, New York, 1985).Google Scholar
  60. 56.
    J. W. Nibler and G. V. Knighten, in Raman Spectroscopy of Gases and Liquids, A. Weber ed. (Springer-Verlag, New York, 1979), p. 243.Google Scholar
  61. 57.
    G. Stegeman, private communication.Google Scholar
  62. 58.
    S. Maneuf, A. Barthélémy and Cl. Froehly, J. Optics (Paris) 17, 139 (1986).ADSCrossRefGoogle Scholar
  63. 59.
    J. Marburger and F. Felber, Phys. Rev. A 17, 335 (1978).ADSCrossRefGoogle Scholar
  64. 60.
    F. A. P. Tooley, S. D. Smith and C. T. Seaton, Appl. Phys. Lett. 43, 807 (1983).ADSCrossRefGoogle Scholar
  65. 61.
    H. F. Harmuth, Journal of Mathematics and Physics 36, 269 (1957).MathSciNetMATHGoogle Scholar
  66. 62.
    M. Kubicek, Algorithm 502, ACM TOMS 2, 98 (1976).MATHGoogle Scholar
  67. 63.
    G. Vitrant, Thèse d’Etat, INP Grenoble (France) (1989).Google Scholar
  68. 64.
    A. Yariv, IEEE J. Quantum Electron. QE-9, 919 (1973).ADSCrossRefGoogle Scholar
  69. 65.
    H. Kogelnik, in Integrated Optics, T. Tamir ed. (Springer-Verlag, New York, 1979), Chap. 2.Google Scholar
  70. 66.
    G. Vitrant and P. Arlot, J. Appl. Phys. 61, 4744 (1987).ADSCrossRefGoogle Scholar
  71. 67.
    H. Chelli, A. Koster, N. Paraire, F. Pardo, H. Sauer, M. Carton and S. Laval, Rev. Phys. Appl. 22, 1273 (1987).CrossRefGoogle Scholar
  72. 68.
    W. Lukosz, P. Pirani and V. Briguet, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian and S. D. Smith eds. (Springer-Verlag, Berlin, 1986), p. 109.CrossRefGoogle Scholar
  73. 69.
    G. Assanto, B. Svensson, D. Kuchibhatla, U. J. Gibson, C. T. Seaton and G. I. Stegeman, Opt. Lett. 11, 644 (1986).ADSCrossRefGoogle Scholar
  74. 70.
    P. Martinot, A. Koster and S. Laval, IEEE J. Quantum Electron. QE-21, 1140 (1985).ADSCrossRefGoogle Scholar
  75. 71.
    C. Liao and G. I. Stegeman, Appl. Phys. Lett. 44, 164, (1984).ADSCrossRefGoogle Scholar
  76. C. Liao, G. I. Stegeman, C. T. Seaton, R. L. Shoemaker, J. D. Valera and H. G. Winful, J. Opt. Soc. Am. A 2, 590 (1985).ADSCrossRefGoogle Scholar
  77. 72.
    G. Vitrant, R. Reinisch, J. Cl. Paumier, G. Assanto and G. Stegeman, Opt. Lett. 14, 898 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • R. Reinisch
    • 1
  • G. Vitrant
    • 1
  • M. Nevière
    • 2
  1. 1.LEMO URA CNRS n° 833Grenoble CédexFrance
  2. 2.Laboratoire d’Optique Electromagnétique — UA CNRS n° 843Centre de Saint JérômeMarseille Cédex 13France

Personalised recommendations