Linear and Nonlinear Theory of Surface Polariton Diffraction

  • A. I. Voronko
  • Yu. V. Gulyaev
  • G. N. Shkerdin
Part of the NATO ASI Series book series (NSSB, volume 247)


It is now well established that dielectric structures with interfaces can support surface and guided electromagnetic waves. This has brought about the emergence and rapid development of such fields as integrated optics1–3 and surface acoustics.4 The characteristic distances over which major processes at interfaces occur are, in fact, microdistances. This is important both from the point of view of investigating the interface microstructure,5–6 using spectroscopic methods, and for the development and design of integrated-optical devices for information processing.7 A complete description of surface wave interactions must include nonlinear effects and this aspect will be considered here.


Dielectric Permittivity Energy Flow Diffract Field Surface Polariton Surface Electromagnetic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1974).Google Scholar
  2. 2.
    A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman, New York, 1983).Google Scholar
  3. 3.
    A. Yariv, P. Yeh, Optical Waves in Crystals (Addison-Wesley, New York, 1984).Google Scholar
  4. 4.
    L. M. Brekhovskikh, Waves in Layered Media (Academic Press, New York, 1980).MATHGoogle Scholar
  5. 5.
    Surface Polaritons, V. M. Agranovich and D. L. Mills eds. (North Holland, 1982).Google Scholar
  6. 6.
    Electromagnetic Surface Modes, A. D. Boardman ed. (John Wiley, 1982).Google Scholar
  7. 7.
    Integrated Optics, T. Tamir ed. (Springer-Verlag, Berlin, 1975).Google Scholar
  8. 8.
    A. A. Maradudin, Ztschr. Phys. B. — Condensed Matter 41, 341, (1981).ADSCrossRefGoogle Scholar
  9. 9.
    N. N. Akhmediev, Sov. Phys. JETP 56, 299 (1982).Google Scholar
  10. 10.
    V. M. Agranovich, V. S. Babichenko, V. Ya. Chernyak, Sov. Phys. JETP Lett. 32, 512 (1982).ADSGoogle Scholar
  11. 11.
    K. M. Leung, Phys. Rev. A 31, 1189 (1975).ADSCrossRefGoogle Scholar
  12. 12.
    A. D. Boardman and T. Twardowski, Phys. Rev. A 39, 2481 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    E. Garmire, S. D. Allen, J. Marburger, C. M. Verber, Optics Lett. 3, 69 (1978).ADSCrossRefGoogle Scholar
  14. 14.
    J. L. Jewell, M. C. Rushford, H. M. Gibbs, Appl. Phys. Lett. 48, 172 (1984).ADSCrossRefGoogle Scholar
  15. 15.
    D. L. Mills, A. A. Maradudin, Phys. Rev. Lett. 31, 372 (1973).ADSCrossRefGoogle Scholar
  16. 16.
    A. Otto, Ztschr. Phys. 216, 398 (1968).CrossRefGoogle Scholar
  17. 17.
    E. Kretschman, Ztschr. Phys. 241, 241 (1971).CrossRefGoogle Scholar
  18. 18.
    G. N. Zhizhin, M. A. Moskaleva, E. V. Shomina and V. A. Yakovlev, Sov. Phys. JETP Lett. 29, 486 (1979).ADSGoogle Scholar
  19. 19.
    F. DeMartini, Y. R. Shen, Phys. Rev. Lett. 36, 216 (1976).ADSCrossRefGoogle Scholar
  20. 20.
    F. DeMartini, G. Giuliani, P. Mataloni et al, Phys. Rev. Lett. 37, 440 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    H. Talaat, W. P. Chen, E. Burstein, J. Schoenwald,’ scattering of volume and surface electromagnetic waves by surface acoustic waves’ in Ultrasonic Symp. Proc, p. 441 (1975).Google Scholar
  22. 22.
    R. Orlowsky, P. Urner, D. Hopnauer, Surface Sci. 82, 69 (1979).ADSCrossRefGoogle Scholar
  23. 23.
    G. I. Stegeman, A. A. Maradudin, T. S. Rahman, Phys. Rev. B 23, 2576, (1981).ADSCrossRefGoogle Scholar
  24. 24.
    J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, 1972).Google Scholar
  25. 25.
    V. V. Shevchenko, Continuous Transitions in Open Waveguides, Introduction to the Theory (Golen Press, Boulder, 1971).Google Scholar
  26. 26.
    M. Born, E. Wolf, Principles of Optics..Google Scholar
  27. 27.
    A. I. Voronko, L. G. Klimova, G. N. Shkerdin, Solid State Commun. 61, 361 (1987).ADSCrossRefGoogle Scholar
  28. 28.
    A. I. Voronko, L. G. Klimova, G. N. Shkerdin, Sov. Phys. Solid State 28, 602 (1986).Google Scholar
  29. 29.
    V. M. Agranovich, T. A. Leskova, ‘Diffraction methods in the spectroscopy of thin-films in the vicinity of resonances’ in Progress in Surface Science 88, 169–327 (1989).Google Scholar
  30. 30.
    V. M. Agranovich, A. G. Malshukov, Optics Commun. 11, 169 (1974).ADSCrossRefGoogle Scholar
  31. 31.
    V. M. Agranovich, A. I. Voronko, T. A. Leskova, ‘Bistability on a Surface in Nonlinear Diffraction’, Proc. of the Third USA-USSR Symposium on Laser Optics of Condensed Matter, Leningrad, 1987 (Plenum, New York, 1988), p. 147–155.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • A. I. Voronko
    • 1
  • Yu. V. Gulyaev
    • 1
  • G. N. Shkerdin
    • 1
  1. 1.Institute of Radioengineering and ElectronicsUSSR Academy of SciencesMoscow, CentreUSSR

Personalised recommendations