Advertisement

Second Harmonic Generation in Optical Fibers

  • R. H. Stolen
Part of the NATO ASI Series book series (NSSB, volume 247)

Abstract

Second harmonic generation was not expected to play an important role in fiber nonlinear optics. In contrast to bulk and planar guided-wave nonlinear optics, where so-called χ(2) phenomena such as second harmonic generation and three-photon parametric amplification have dominated the field, fibers usually demonstrate X (3) phenomena. These X (3) nonlinear effects have been extensively studied in fibers and include spectral broadening, stimulated Raman and Brillouin scattering, nonlinear switching, and parametric four-photon mixing.1 The χ(2) phenomena are expected to be absent in glass fibers because of inversion symmetry in the fiber core.

Keywords

Optical Fiber Harmonic Generation Waveguide Mode Multiphoton Absorption Harmonic Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Stolen, “Nonlinear properties of optical fibers”, in Optical Fiber Telecommunications, S. E. Miller and A. G. Chenowyth eds. (Academic Press, New York, 1979) Ch. 5.Google Scholar
  2. G. P. Agrawal, Nonlinear Optical Fibers (Academic Press, San Diego, 1989).Google Scholar
  3. 2.
    Y. Fujii, B. S. Kawasaki, K. O. Hill, and D. C. Johnson, “Sum frequency generation in optical fibers”, Opt. Lett. 5, 48 (1980).ADSCrossRefGoogle Scholar
  4. Y. Ohmori and Y. Sasaki, “Phasematched sum-frequency light generation in optical fibers”, Appl. Phys. Lett. 39, 466 (1981).ADSCrossRefGoogle Scholar
  5. 3.
    J. M. Gabriagues, “Third-harmonic and three-wave sum-frequency light generation in an elliptical-core optical fiber”, Opt. Lett. 8, 183 (1983).ADSCrossRefGoogle Scholar
  6. 4.
    U. Österberg and W. Margulis, “Efficient second harmonic generation in an optical fiber”, XIV Internat. Quantum Electron. Conf., San Fransisco (1986) paper WBB1; and “Dye laser pumped by Nd:YAG laser pulses frequency doubled in an optical fiber”, Opt. Lett. 11, 516(1986).Google Scholar
  7. 5.
    M. C. Farries, “Efficient second harmonic generation in an optical fibre”, Proc. Colloquium on Non-linear Optical Waveguides (London, IEE, 1988); and Laser Focus 24, 12 (1988).Google Scholar
  8. 6.
    R. H. Stolen and H. W. K. Tom, “Self-organized phase-matched harmonic generation in optical fibers”, Digest of Conference on Lasers and Electrooptics (Optical Society of America, 1987), paper ThL2; Opt. Lett. 12, 585 (1987).Google Scholar
  9. 7.
    J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric”, Phys. Rev. 127, 1918 (1962).ADSCrossRefGoogle Scholar
  10. 8.
    M. C. Farries, P. St. J. Russell, M. E. Fermann, and D. N. Payne, “Second-harmonic generation in an optical fiber by self-written χ(2) grating”, Electron. Lett. 23, 322 (1987).CrossRefGoogle Scholar
  11. 9.
    N. A. Sanford and W. C. Robinson, “Direct measurement of effective indices of guided modes in LiNbO3 waveguides using the Čerenkov second harmonic”, Opt. Lett. 12, 445 (1987).ADSCrossRefGoogle Scholar
  12. T. Taniuchi and K. Yamamoto, “Second harmonic generation using proton-exchanged LiNbO3 waveguide”, Optoelectronics-Devices and Technologies 2, 53 (1987).Google Scholar
  13. 10.
    E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonie generation of green light in periodically poled planar lithium niobate waveguide”, Electron. Lett. 25, 174 (1989).CrossRefGoogle Scholar
  14. J. Webjorn, F. Laurell, and G. Arvidsson, “Periodically domain-inverted lithium niobate channel waveguides for second harmonic generation”, Digest of Topical Meeting on Nonlinear Guided Wave Phenomena (Optical Society of America, 1989), p. 6.Google Scholar
  15. 11.
    N.B. Baranova and B. Ya. Zeldovich, “Extension of holography to multifrequency fields”, Pisma ZhETF 45, 562 (1987) [JETP Lett. 45, 717 (1987)].ADSGoogle Scholar
  16. 12.
    R. W. Terhune and D. A. Weinberger, “Second-harmonic generation in fibers”, J. Opt. Soc. Am. B 4, 661 (1987).ADSCrossRefGoogle Scholar
  17. 13.
    H. W. K. Tom, R. H. Stolen, G. D. Aumiller, and W. Pleibel, “Preparation of longcoher-ence-length second-harmonic-generating optical fibers by using mode-locked pulses”, Opt. Lett. 13, 512 (1988).ADSCrossRefGoogle Scholar
  18. 14.
    W. Margulis and U. Österberg, “Second-harmonic generation in optical glass fibers”, J. Opt. Soc. B 5, 312 (1988).ADSCrossRefGoogle Scholar
  19. 15.
    M. C. Farries, M. E. Fermann, P. St. J. Russell, and D. N. Payne, “Tunable second-order susceptibility gratings for harmonic generation in optical fibers”, Digest of the Optical Fiber Communications Conf.’ 88 (Optical Society of America/IEEE, New Orleans, LA, Jan. 1988), paper THE2.Google Scholar
  20. M. E. Fermann, M. C. Farries, P. St. J. Russell, and L. Poyntz-Wright, “Tunable holographic second-harmonic generators in high-birefringence optical fibers”, Opt. Lett. 13, 282 (1988).ADSCrossRefGoogle Scholar
  21. 16.
    M. A. Saifi and M. J. Andrejco, “Second-harmonic generation in single-mode and multi-mode fibers”, Opt. Lett. 13, 773 (1988).ADSCrossRefGoogle Scholar
  22. E. Snitzer, “Rare earth fiber lasers”, J. Less-Common Metals 148, 45 (1989).CrossRefGoogle Scholar
  23. 17.
    B. Valk, E. M. Kim, and M. M. Salour, “Second harmonic generation in Ge-doped fibers with a mode-locked Kr+ laser”, Appl. Phys. Lett. 51, 722 (1987).ADSCrossRefGoogle Scholar
  24. 18.
    M. C. Farries and M. E. Fermann, “Frequency doubling of 1.319 /im radiation in an optical fibre by optically written χ(2) grating”, Electron. Lett. 24, 294 (1987).CrossRefGoogle Scholar
  25. 19.
    M. V. Bergot, M. C. Farries, M. E. Fermann, L. Li, L. J. Poyntz-Wright, P. St. J. Russell, and A. Smithson, “Generation of permanent optically induced second-order nonline-arities in optical fibres by poling”, Opt. Lett. 13, 592 (1988).ADSCrossRefGoogle Scholar
  26. 20.
    T. E. Tsai, E. J. Friebele, D. L. Griscom, M. A. Saifi, and U. Österberg, “Correlation of defect centers with second harmonic generation in Ge and G-P-doped silica core single mode fibers”, Topical Meeting on Nonlinear Guided-Wave Phenomena: Physics and Applications, 1989 Technical Digital Series, Vol. 2 (Optical Society of America, Washington, DC 1989), p. 250.Google Scholar
  27. 21.
    M. E. Fermann, “Characterisation techniques for special optical fibres”, Ph. D. Thesis, University of Southamption (1988).Google Scholar
  28. 22.
    F. Ouellette, K. O. Hill, and D. C. Johnson, “Light-induced erasure of self-organized χ(2) gratings in optical fibers”, Opt. Lett. 13, 515 (1988).ADSCrossRefGoogle Scholar
  29. 23.
    K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fibre waveguides: application to reflection filter fabrication”, Appl. Phys. Lett. 32, 647 (1978).ADSCrossRefGoogle Scholar
  30. J. Stone, “Photorefractivity in Ge02-doped silica fibers”, J. Appl. Phys. 62, 4371 (1987).ADSCrossRefGoogle Scholar
  31. C. P. Kuo, U. Österberg, C. T. Seaton, G. I. Stegeman, and K. O. Hill, “Optical fibers with negative group-velocity dispersion in the visible”, Opt. Lett. 13, 1032 (1988).ADSCrossRefGoogle Scholar
  32. 24.
    G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a tranverse holographic method”, Opt. Lett. 14, 823 (1989).ADSCrossRefGoogle Scholar
  33. 25.
    A. M. Glass, “The photorefractive effect”, Optical Engineering 17, 470 (1978).Google Scholar
  34. J. Feinberg and R. W. Hellwarth, Opt. Lett. 5, 519 (1980).ADSCrossRefGoogle Scholar
  35. B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, and R. Neurgaonkar, “Amplifying continuous wave phase conjugate mirror with strontium barium niobate”, Appl. Phys. Lett. 40, 863 (1983).ADSCrossRefGoogle Scholar
  36. 26.
    D. K. Kondepudi, F. Moss, and P. V. E. McClintock, “Observation of symmetry breaking, state selection and sensitivity in a noisy electronic system”, Physica 21D, 296 (1986).ADSGoogle Scholar
  37. 27.
    B. Ya. Zeldovich, private communication.Google Scholar
  38. 28.
    B. Batdorf, C. Krautschik, U. Österberg, G. Stegeman, and T. F. Morse, “Length dependence of second harmonic generation in optical fibers prepared with 1.064 /μm and 532 nm light”, Topical Meeting on Nonlinear Guided-Wave Phenomena: Physics and Applications, 1989 Technical Digest Series, Vol. 2 (Optical Society of America, Washington, D. C. 1989), p. 259.Google Scholar
  39. 29.
    W. Margulis, I. C. S. Carvalho, and J. P. von der Weid, “Phase measurement in frequency-doubling fibers”, Opt. Lett. 14, 700 (1989).ADSCrossRefGoogle Scholar
  40. 30.
    P. Chmela, “Second-harmonic generation from quantum noise owing to fifth-order nonli-nearity”, Opt. Lett. 13, 669 (1988).ADSCrossRefGoogle Scholar
  41. 31.
    V. Mizrahi and J. E. Sipe, “Generation of permanent optically induced second-order non-linearities in optical fibers by poling: comment”, Appl. Opt. 28, 1976 (1989).ADSCrossRefGoogle Scholar
  42. 32.
    A. Krotkus and W. Margulis, “Investigations of the preparation process for efficient second-harmonic generation in optical fibers”, Appl. Phys. Lett. 52, 1942 (1988).ADSCrossRefGoogle Scholar
  43. 33.
    W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers”, J. Opt. Soc. Am. B 1, 139 (1984).ADSCrossRefGoogle Scholar
  44. 34.
    Index data for fused SiO2 from American Institute of Physics Handbook, B. E. Grey ed. (McGraw-Hill, N. Y., 1963), p. 6:25.Google Scholar
  45. 35.
    D. Gloge, “Weakly guiding fibers”, Appl. Opt. 10, 2252 (1971).ADSCrossRefGoogle Scholar
  46. 36.
    R. Kashyap, “Photo-induced enhancement of second harmonic generation in optical fibres”, Topical Meeting on Nonlinear Guided-Wave Phenomena, 1989 Technical Digest Series, Vol. 2 (Optical Society of America, Washington, D. C. 1989), p. 255.Google Scholar
  47. 37.
    M. E. Fermann, L. Li, M. C. Farries, and D. N. Payne, “Frequency-doubling by modal phase matching in poled optical fibres”, Electron. Lett. 24, 894 (1988).CrossRefGoogle Scholar
  48. 38.
    F. R. Nash, G. D. Boyd, M. Sargent III, and P. M. Bridenbaugh, “Effect of optical inho-mogeneities on phase matching in nonlinear crystals”, J. Appl. Phys. 41, 2564 (1970).ADSCrossRefGoogle Scholar
  49. 39.
    Y. Ohmori and Y. Sasaki, “Two-wave sum-frequency light generation in optical fibers”, IEEE J. Quantum Electron. QE-18, 758 (1982).ADSCrossRefGoogle Scholar
  50. 40.
    F. P. Payne, “Frequency doubling in single-mode optical fibres”, 4th Int. Symp. on Optical and Optoelectronic Applied Science and Engineering, The Hague (SPIE, 1987).Google Scholar
  51. 41.
    F. P. Payne, “Second-harmonic generation in single-mode optical fibres”, Electron. Lett. 23, 1215 (1987).CrossRefGoogle Scholar
  52. 42.
    M. C. Farries, M. E. Fermann, and P. St. J. Russell, “Second harmonic generation in optical fibres”, Topical Meeting on Nonlinear Guided-Wave Phenomena: Physics and Applications, 1989 Technical Digest Series, Vol. 2 (Optical Society of America, Washington, D. C. 1989), p. 246.Google Scholar
  53. 43.
    Unpublished work.Google Scholar
  54. 44.
    L. J. Poyntz-Wright and P. St. J. Russell, “Spontaneous relaxation processes in irradiated germanosilicate optical fibres”, Electron. Lett. 25, 478 (1989).ADSCrossRefGoogle Scholar
  55. 45.
    Y. Watanabe, H. Kawazoe, K. Shibuya, and K. Muta, “Structure and mechanism of formation of drawing-or radiation-induced defects in SiO2:GeO2 optical fiber”, Jpn. J. Appl. Phys. 25, 425 (1986).ADSCrossRefGoogle Scholar
  56. 46.
    D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers”, J. Appl. Phys. 54, 3743 (1983).ADSCrossRefGoogle Scholar
  57. 47.
    F. Ouellette, K. O. Hill, and D. C. Johnson, “Enhancement of second-harmonic generation in optical fibers by a hydrogen and heat treatment”, Appl. Phys. Lett. 54, 1086 (1989).ADSCrossRefGoogle Scholar
  58. 48.
    J. M. Gabriagues and H. Février, “Analysis of frequency-doubling process in optical fibers using Raman spectroscopy”, Opt. Lett. 12, 720 (1987).ADSCrossRefGoogle Scholar
  59. 49.
    R. H. Stolen and G. E. Walrafen “Water and its relation to broken bond defects in fused silica”, J. Chem. Phys. 64, 2623 (1976).ADSCrossRefGoogle Scholar
  60. 50.
    C. G. Bethea, “Electric field induced second harmonic generation in glass”, Appl. Opt. 14, 2435 (1975).ADSCrossRefGoogle Scholar
  61. 51.
    V. Mizrahi, U. Österberg, J. E. Sipe, and G. I. Stegeman, “Test of a model of efficient second-harmonic generation in glass optical fibers”, Opt. Lett. 13, 279 (1988).ADSCrossRefGoogle Scholar
  62. 52.
    V. Mizrahi, U. Österberg, C. Krautschik, G. I. Stegeman, J. E. Sipe, and T. F. Morse, “Direct test of a model of efficient second-harmonic generation in glass optical fibers”, Appl. Phys. Lett. 53, 557 (1988).ADSCrossRefGoogle Scholar
  63. 53.
    M. E. Fermann, L. Li, M. C. Farries, D. N. Payne, and P. St. J. Russell, “Second-harmonic generation in poled optical fibres: dynamics and phasematching techniques”, Topical Meeting on Nonlinear Guided-Wave Phenomena: Physics and Applications, 1989 Technical Digest Series, Vol. 2 (Optical Society of America, Washington, D. C. 1989), paper PD6.Google Scholar
  64. 54.
    R. Kashyap, “Phase-matched electric-field-induced second-harmonic generation in optical fibers”, J. Opt. Soc. Am. B 6, 313 (1989).ADSCrossRefGoogle Scholar
  65. 55.
    J. P. Herman and J. Ducuing, “Third-order polarizabilities of long-chain molecules”, J. Appl. Phys. 45, 5100 (1974).ADSCrossRefGoogle Scholar
  66. 56.
    S-H. Chen, C.-L. Kuo, and M.-C. Lee, “Quasi-static electric-field-enhanced degenerate four-wave mixing in a nematic liquid-crystal film”, Opt. Lett. 14, 122 (1989).ADSCrossRefGoogle Scholar
  67. 57.
    N. M. Lawandy, “Mechanism for efficient second harmonic generation in Ge and P-doped optical fibers”, Optical Society of America 1988 Annual Meeting (Santa Clara, CA) paper FS4.Google Scholar
  68. 58.
    D. Z. Anderson, “Efficient second-harmonic generation in glass fibers: The possible role of photo-induced charge redistribution”, SPIE proa, Vol. 1148 (1989).Google Scholar
  69. 59.
    E. M. Dianov, P. G. Kazansky, and D. Yu Stepanov, “On the problem of photoinduced second harmonic generation in optical fibers”, Sov. J. Quantum Electron. 16, 887 (1989).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • R. H. Stolen
    • 1
  1. 1.AT&T Bell LaboratoriesHolmdelUSA

Personalised recommendations