Laser Atmospheric Wind Velocity Measurements

  • R. T. Menzies
Part of the Ettore Majorana International Science Series book series (EMISS, volume 54)


The value and use of wind field measurements in environmental and Earth system science is discussed as an introduction. A brief overview or remote sensing techniques which can be used for wind field measurements is then included to provide a context for evaluating the particular characteristics of Doppler lidar which enhance wind measurement capability. These techniques include cloud-track winds measurements, aerosol or water vapor pattern correlation techniques, various limb sounders, and Doppler radar. Principles of Doppler lidar are then introduced, along with a discussion of the means of providing a backscatter signal which can be used to detect wind velocity. The discussion of Doppler lidar principles and techniques distinguishes coherent and incoherent (direct detection) lidar. For each of these two classes of Doppler lidar, SNR expressions are developed, and the rationale behind choice of wavelengths and laser technology is discussed. Examples of Doppler lidar use in field measurements are cited, and several design considerations for future use of this technique to measure global wind fields are presented.


Coherence Time Doppler Radar Backscatter Signal Lidar System Doppler Lidar 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Rees, P. A. Rounce, I. McWhirter, A. F. D. Scott, A. H. Greenaway and W. Towlson, J. Phys. E:Sci.Instrum., 15, 191–206 (1982)Google Scholar
  2. 2.
    V. J. Abreu, Appl. Opt., 18, 2992 (1979)CrossRefGoogle Scholar
  3. 3.
    I. S. McDermid, J. B. Laudenslager and D. Rees, UV-Excimer laser based incoherent Doppler lidar system, in: “Global Wind Measurements”, W. E. Baker and R. J. Curran, Eds. ( A. Deepak, Hampton, VA (1985)Google Scholar
  4. 4.
    R. T. Menzies, Appl. Opt., 25, 2546–2553 (1986)CrossRefGoogle Scholar
  5. 5.
    R. T. Menzies and R. M. Hardesty, Proc. IEEE, 77, 449–462 (1989)CrossRefGoogle Scholar
  6. 6.
    A. E. Siegman, Proc. IEEE, 54, 1350–1356 (1966)CrossRefGoogle Scholar
  7. 7.
    R. H. Kingston, “Detection of Optical and Infrared Radiation”, Springer-Verlag, Beriin/Heidelberg/New York, 1978, ch. 3Google Scholar
  8. 8.
    B. J. Rye, Appl. Opt., 18, 1390–1398 (1979)CrossRefGoogle Scholar
  9. 9.
    J. H. Shapiro, Appl. Opt., 26, 3600–3606 (1987)CrossRefGoogle Scholar
  10. 10.
    A. E. Siegman, Appl. Opt., 13, 353–367 (1974)CrossRefGoogle Scholar
  11. 11.
    A. Parent, N. McCarthy and P. Lavigne, IEEE J. Quant. Electron., QE-23, 222–228 (1987)Google Scholar
  12. 12.
    D. M. Tratt and R. T. Menzies, Appl. Opt., 27, 3645–3649 (1988)CrossRefGoogle Scholar
  13. 13.
    R. J. Doviak and D. S. Zrnic, “Doppler Radar and Weather Observations”, Academic Press, New York (1984)Google Scholar
  14. 14.
    R. J. Keeler, R. J. Serafín, R. L. Schwiesow and D. H. Lenschow, J. Atmos. and Oceanic Tech., 4, 113–127 (1987)CrossRefGoogle Scholar
  15. 15.
    M. J. Post and W. D. Neff, Bull. Amer. Meteorolog. Soc., 67, 274–281, (1985)CrossRefGoogle Scholar
  16. 16.
    M. J. Post, Appl. Opt., 23, 2507–2509 (1984)CrossRefGoogle Scholar
  17. 17.
    R. T. Menzies, G. M. Ancellet, D. M. Tratt, M. G. Wurtele, J. C. Wright and W. Pi, J. Geophys. Res., 94, 9897–9908 (1989)CrossRefGoogle Scholar
  18. 18.
    J. M. Vaughan, D. W. Brown, P. H. Davies, C. Nash, G. Kent and M. P. McCormick, Nature, 332, 709–711 (1988)CrossRefGoogle Scholar
  19. 19.
    G. S. Kent and S. K. Schaffner, Analysis of atmospheric dynamics and radiative properties for understanding weather and climate; Task 1. 10 μm backscatter modeling, “STC Technical Report 2175”, (Science and Technology Corp., Hampton, Virginia, January 1988 )Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • R. T. Menzies
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations