Advertisement

Laser Fluorescence Spectroscopy in Environmental Monitoring

  • S. Svanberg
Part of the Ettore Majorana International Science Series book series (EMISS, volume 54)

Abstract

Fluorescence spectroscopy has long been used for analytical and diagnostic purposes1–4.Using UV laser sources, the techniques of laser-induced fluorescence (LIF) have become particularly powerful. The LIF process in large molecules, such as biological ones, is schematically illustrated in Figure 1 (Ref. 5). The ground as well as the excited electronic levels are broadened by vibrational motion and interactions with surrounding molecules. Thus, absorption occurs in a broad band allowing a fixed-frequency UV laser, such as a nitrogen laser (λ=337 nm), an excimer laser (XeCl, λ=308 nm; XeF, λ=351 nm) or a frequency-tripled Nd:YAG laser (λ= 355 nm) to be used for the excitation. A radiationless relaxation to the bottom of the excited band then occurs on a pico-second time scale. The molecules remain here for a typical lifetime of few nanoseconds. Fluorescent light is released in a red-shifted broad band, which is frequently rather structureless. Internal conversion and transfer of energy to surrounding molecules are strongly competing radiationless processes.

Keywords

Phaeodactylum Tricornutum Radiationless Process Radiationless Relaxation Construction Consideration Nitrogen Laser Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. H. Hercules (ed.), “Fluorescence and Phosphorescence Analysis”, Interscience, New York (1966).Google Scholar
  2. 2.
    E. L. Wehry (ed.), “Modern Fluorescence Spectroscopy”, Vols. 1 and 2, Plenum, New York (1976)Google Scholar
  3. 3.
    S. Udenfriend, “Fluorescence Assay in Biology and Medicine”, Vol. I and Vol. II, Academic Press, New York (1969)Google Scholar
  4. 4.
    J. R. Lakowicz, “Principles of Fluorescence Spectroscopy”, Plenum, New York (1983)Google Scholar
  5. 5.
    P. S. Andersson, E. Kjeilen, S. Montan, K. Svanberg and S. Svanberg, Lasers Med. Sci., 2: 41 (1986)CrossRefGoogle Scholar
  6. 6.
    F. E. Höge, R. N. Swift and J. K. Yungel, Appl. Opt., 25: 48 (1986)CrossRefGoogle Scholar
  7. 7.
    R. A. O’Neill, L. Buja-Bijunas and D. M. Rayner, Appl. Opt., 19: 863 (1980)CrossRefGoogle Scholar
  8. 8.
    G. A. Capelle, L. A. Franks and D. A. Jessup, Appl. Opt., 22: 3382 (1983)CrossRefGoogle Scholar
  9. 9.
    H. H. Kim, Appl. Opt., 16: 46 (1977)CrossRefGoogle Scholar
  10. 10.
    F. E. Höge, R. N. Swift and E. B. Frederick, Appl. Opt., 19: 871 (1980)CrossRefGoogle Scholar
  11. 11.
    L. Celander. K. Fredriksson, B. Galle and S. Svanberg, Investigation of laser-induced fluorescence with applications to remote sensing of environmental parameters, Goteborg Institute of Physics Reports GIPR-149, CTH, Goteborg (1978)Google Scholar
  12. 12.
    K. Fredriksson, B. Galle, K. Nyström, S. Svanberg and B. Ostrom, Underwater laser-radar experiments for bathymetry and fish-school detection, Göteborg Institute of Physics Reports GIPR-162, CTH, Göteborg (1978)Google Scholar
  13. 13.
    K. Fredriksson, B. Galle, K. Nyström, S. Svanberg and B. Öström, Marine laser probing — results from a field test, Medd. Fr. Havsfiskelaboratoriet 245, Swedish Fishery Board, Lysekil (1979)Google Scholar
  14. 14.
    B. Galle, T. Olson an S. Svanberg, The Fluorescence properties of jelly-fish, Goteborg Institute of Physics Reports GIPR-181, CTH, Göteborg (1979) (in Swedish)Google Scholar
  15. 15.
    P. S. Andersson, S. Montan and S. Svanberg, Oil-slick characterization using an airborne fluorosensor — construction considerations, Lund Reports on Atomic Physics LRAP-45, LTH, Lund (1985)Google Scholar
  16. 16.
    P. S. Andersson, S. Montan and S. Svanberg, Flashlamps for remote fluorescence characterization of oil slicks, Lund Reports on Atomic Physics LRAP-57, LHT, Lund (1986)Google Scholar
  17. 17.
    P. S. Andersson, S. Montan and S. Svanberg, Appl. Phys., B44: 19 (1987)Google Scholar
  18. 18.
    P. S. Andersson, S. Montan and S. Svanberg, Fluorosensor for remote characterization of marine oil-slicks, Intern. Coll. on Remote Sensing of Pollution of the Sea, Oldenburg, March 31 — April 3 (1987)Google Scholar
  19. 19.
    R. M. Measures, “Laser Remote Sensing: Fundamentals and Applications”, Wiley, New York (1984)Google Scholar
  20. 20.
    F. E. Höge, Ocean and terrestrial lidar measurements, in: “Laser Remote Chemical Analysis”, R. M. Measures, ed., Wiley-Interscience, New York (1988)Google Scholar
  21. 21.
    S. Svanberg, Contemp. Phys., 21: 541 (1980)CrossRefGoogle Scholar
  22. 22.
    F. E. Höge, R. N. Swift and J. K. Yungel, Appl. Opt., 22: 2991 (1983)CrossRefGoogle Scholar
  23. 23.
    E. W. Chappelle, F. M. Wood, W. W. Newcomb and J. E. McMurtrey, Appl. Opt., 24: 74 (1985)CrossRefGoogle Scholar
  24. 24.
    F. Castagnoli, G. Cecchi, L. Pantani, I. Pippi, B. Radicati and P. Mazzinghi, A fluorescence lidar for land and sea remote sensing, SPIE, 663: 212 (1986)Google Scholar
  25. 25.
    S. Andersson-Engels, K. Callander and B. Galle, Investigation of the possibilities to use laser-induced fluorescence to map conifer forest damage caused by ozone, IVL Report L88/146, IVL, Göteborg (1988)Google Scholar
  26. 26.
    S. Svanberg, Environmental diagnostics, in: “Trends in Physics”, M. M. Woolfson, ed., Adam Hilger, Bristol (1979)Google Scholar
  27. 27.
    P. Herder, T. Olsson, E. Sjöblom and S. Svanberg, Monitoring of surface layers using laser-induced fluorescence, Lund Reports on Atomic Physics LRAP-9, LTH, Lund (1981)Google Scholar
  28. 28.
    H. S. Chen, “Space Remote Sensing Systems”, Academic, Orlando (1985)Google Scholar
  29. 29.
    S. Montan and S. Svanberg, Appl. Phys., B38: 241 (1985)CrossRefGoogle Scholar
  30. 30.
    S. Montan and S. Svanberg, Industrial applications of laser-induced fluorescence, L.I.A. ICALEO, 47: 153 (1985)Google Scholar
  31. 31.
    S. Svanberg, Phys. Scripta, T19: 469 (1987)CrossRefGoogle Scholar
  32. 32.
    P. S. Andersson, S. Montan and S. Svanberg, IEE J. Quant. Electron., QE-23: 1798 (1987)Google Scholar
  33. 33.
    S. Svanberg, Phys. Scripta, T16: 90 (1989)CrossRefGoogle Scholar
  34. 34.
    S. Andersson-Engels, J. Ankerst, A. Brun, A. Einer, A. Gustafson, J. Johansson, S.-E. Karlsson, D. Killander, E. Kjellén, E. Lindstedt, S. Montán, L. G. Salford, B. Simonsson, U. Stenram, L.-G. Strömblad, K. Svanberg and S. Svanberg, Ber. Bunsenges Phys. Chem., 93: 335 (1989)Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • S. Svanberg
    • 1
  1. 1.Department of PhysicsLund Institute of TechnologyLundSweden

Personalised recommendations