Advertisement

Trace Analysis of Plutonium and Technetium by Resonance Ionization Mass Spectrometry Using an Atomic Beam and a Laser Ion Source

  • F. Ames
  • H.-J. Kluge
  • E.-W. Otten
  • B. M. Suri
  • A. Venugopalan
  • G. Herrmann
  • J. Riegel
  • H. Rimke
  • P. Sattelberger
  • N. Trauttmann
  • R. Kirchner
Part of the Ettore Majorana International Science Series book series (EMISS, volume 54)

Abstract

A method for low level detection of plutonium and technetium is described with a detection limit of less than 107 atoms. Plutonium is a very toxic element due to its radioactive decay as well as its chemical behaviour. It was released to the environment in large amounts during the fifties and sixties of his century, principally by nuclear-weapon tests and some accidents. As a result about 0.4 − 4 mBq per gram 239Pu(T1/2 = 24390 y), corresponding to 4 × 108 − 4 × 109 atoms, can be found in the Northern Hemisphere in soil samples.

Keywords

Solar Neutrino Atomic Beam Thermal Ionization Mass Spectrometry Copper Vapor Laser Autoionizing State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Cowan and W. C. Haxton, Science, 216: 51 (1982)CrossRefGoogle Scholar
  2. 2.
    J. N. Bahcall and R. K. Ulrich, Rev. Mod. Phys., 60: 297 (1988)CrossRefGoogle Scholar
  3. 3.
    D. J. Rokop, N. C. Schroeder and K. Wolfsberg, High sensitive technetium analysis using negative thermal ionization mass spectrometry, in: “Advances in Mass Spectrometry”, Proceedings of the 11th Int. Mass Spectrometry Conf. Bordeaux, 1988, P. Longevialle ed., Heyden and Son, London (1989)Google Scholar
  4. 4.
    W. Ruster, F. Ames, H.-J. Kluge, E.-W. Otten, D. Rehklau, F. Scheerer, G. Herrmann, C. Mühleck, J. Riegel, H. Rimke, P. Sattelberger and N. Trauttmann, Nucl. Instr. and Meth. A281: 547 (1989)CrossRefGoogle Scholar
  5. 5.
    P. Sattelberger, M. Mang, G. Herrmann, J. Riegel, H. Rimke, N. Trauttmann, F. Ames and H.-J. Kluge, Radiochim. Acta, 48: 165 (1989)Google Scholar
  6. 6.
    H.-J. Kluge, F. Ames, W. Ruster and K. Wallmeroth, Laser Ion Sources, Proceedings on Accelerated Radioactive Beams Workshop, Vancouver Island (1985) in L. Buchman J. M. D’Auria eds., TRIUMF Proceedings TRI-85-1:119Google Scholar
  7. 7.
    S. V. Andreev, V. I. Mishin and V. S. Letokhov, Optics. Com. 57: 317 (1986)CrossRefGoogle Scholar
  8. 8.
    S. V. Andreev, V. S. Letokhov and V. I. Mishin, Phys. Rev. Lett., 59: 1274 (1987)CrossRefGoogle Scholar
  9. 9.
    S. V. Andreev, V. I. Mishin and V. S. Letokhov, J. Opt. Soc. Am., B5: 2190 (1988)CrossRefGoogle Scholar
  10. 10.
    R. Kirchner, K. H. Burkard, W. Hüller and O. Klepper, Nucl. Instr. and Meth., 186: 295 (1981)CrossRefGoogle Scholar
  11. 11.
    M. Epherre, G. Audi, C. Thibault, R. Klapisch, G. Huber, F. Touchard and H. Wollnik, Nucl. Phys., A340:l (1980)Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • F. Ames
    • 1
  • H.-J. Kluge
    • 1
  • E.-W. Otten
    • 1
  • B. M. Suri
    • 1
  • A. Venugopalan
    • 1
  • G. Herrmann
    • 2
  • J. Riegel
    • 2
  • H. Rimke
    • 2
  • P. Sattelberger
    • 2
  • N. Trauttmann
    • 2
  • R. Kirchner
    • 3
  1. 1.Institut für PhysikJohannes Gutenberg UniversitätMainzFederal Republic of Germany
  2. 2.Institut für KernchemieJohannes Gutenberg UniversitätMainzFederal Republic of Germany
  3. 3.GSIDarmstadtFederal Republic of Germany

Personalised recommendations