Advertisement

Atmospheric Pollution Monitoring Using Laser Lidars

  • S. Svanberg
Part of the Ettore Majorana International Science Series book series (EMISS, volume 54)

Abstract

Advanced techniques are needed to monitor our threatened environment, to evaluate pollution levels and developmental trends. While tropospheric pollution has obvious manifestations in terms of health problems, water and soil acidification, and forest damage, human-induced stratospheric changes in the ozone layer, as evidenced by the occurrence of “ozone holes” at the polar caps, may have much more far-reaching consequences1−6. Laser spectroscopy provides powerful means for remote sensing of molecules in the atmosphere, yielding information on pollution levels as well as meteorological conditions. There are two major kinds of laser methods applicable in remote sensing7–15:
  1. 1)

    Long path absorption monitoring; and,

     
  2. 2)

    Lidar (Light detection and ranging), with subdivisions:

     
  • Fluorescence lidar

  • Raman scattering lidar

  • Mie scattering lidar

  • Differential absorption lidar (DIAL).

Keywords

Lidar System Swedish Natural Science Research Council Differential Absorption Lidar Fluorescence Lidar Tropospheric Pollution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Bach, J. Pankrath and W. Kellogg, eds., “Man’s Impact on Climate”, Elsevier, Amsterdam (1979)Google Scholar
  2. 2.
    R. Revelle, Sci. Amer., 247: 35 (1982)CrossRefGoogle Scholar
  3. 3.
    J. H. Scinfeld, “Atmospheric Chemistry and Physics of Air Pollution”, Wiley, New York (1986)Google Scholar
  4. 4.
    R. P. Wayne, “Chemistry of Atmospheres”, Clarendon Press, Oxford, (1985)Google Scholar
  5. 5.
    B. A. Trush, Rep. Prog. Phys., 51: 1341 (1988)CrossRefGoogle Scholar
  6. 6.
    R. S. Stolarski, Antarctic Ozone Hole, Sci. Am., 258 /1: 30 (1988)CrossRefGoogle Scholar
  7. 7.
    D. A. Killinger and A. Mooradian, eds., “Optical and Laser Remote Sensing”, Springer Series in Optical Sciences, vol. 39, Springer-Verlag, Heidelberg (1983)Google Scholar
  8. 8.
    R. M. Measures, “Laser Remote Sensing: Fundamentals and Applications”, Wiley, New York (1984)Google Scholar
  9. 9.
    E. D. Hinkley, ed., “Laser Monitoring of the Atmosphere”, Topics in Applied Physics, vol. 14, Springer-Verlag, Heidelberg (1976)Google Scholar
  10. 10.
    S. Svanberg, Contemp. Phys., 21: 541 (1980)CrossRefGoogle Scholar
  11. 11.
    S. Svanberg, Fundamentals of atmospheric spectroscopy, in: “Surveillance of Environmental Pollution and Resources by Electromagnetic Waves”, T. Lund, ed., D. Reidel, Dordrecht (1978)Google Scholar
  12. 12.
    S. Svanberg, Laser technology in atmospheric pollution monitoring, in “Applied Physics — Laser and Plasma Technology”, B. C. Tan, ed., World Science, p. 258, Singapore (1985)Google Scholar
  13. 13.
    W. B. Grant, Laser remote sensing techniques, in: “Laser Spectroscopy and its Applications”, L. J. Radziemski, R. W. Solarz, and J. A. Paisner, eds., Marcel Dekker, p. 565, New York (1987)Google Scholar
  14. 14.
    T. Kobayashi, Rem. Sens. Rev., 3: 1 (1987)CrossRefGoogle Scholar
  15. 15.
    R. M. Measures, ed. “Laser Remote Chemical Analysis”, Wiley-Interscience, New York (1988)Google Scholar
  16. 16.
    U. Platt, D. Perner and H. W. Patz, J. Geophys. Res., 84: 6329 (1979)CrossRefGoogle Scholar
  17. 17.
    U. Piatt and D. Perner, Measurements of atmospheric trace gases by long path differential UV/visible absorption spectroscopy, in Ref. (7)Google Scholar
  18. 18.
    H. Edner, A. Sunesson, S. Svanberg, L. Uneus and S. Wallin, Appl. Opt., 25: 403 (1986)CrossRefGoogle Scholar
  19. 19.
    M. L. Chanin, Rayleigh and resonance sounding of the stratosphere and mesosphere, in Ref. (7)Google Scholar
  20. 20.
    C. Granier and G. Megie, Planet. Space Sci., 30: 169 (1982)CrossRefGoogle Scholar
  21. 21.
    K. H. Fricke and U. V. Zahn, J. Atm. Terr. Phys., 47: 499 (1985)CrossRefGoogle Scholar
  22. 22.
    M. P. Me Cormick, T. J. Swisser, W. H. Fuller, W. H. Hunt, and M. T. Osborn, Geofisica Internacional, 23–2: 187 (1984)Google Scholar
  23. 23.
    H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Unéus and W. Wendt, Appi. Opt., 26: 4330 (1987)CrossRefGoogle Scholar
  24. 24.
    K. Fredriksson, B. Galle, K. Nystrom and S. Svanberg, Appl. Opt., 20: 4181 (1981)CrossRefGoogle Scholar
  25. 25.
    K. Fredriksson and S. Svanberg, Pollution monitoring using Nd:YAG based lidar systems, in Ref. (7)Google Scholar
  26. 26.
    K. Fredriksson and H. M. Hertz, Appl. Opt., 23: 1403 (1984)CrossRefGoogle Scholar
  27. 27.
    A. L. Egeback, K. Fredriksson and H. M. Hertz, Appl. Opt., 23: 722 (1984)CrossRefGoogle Scholar
  28. 28.
    H. Edner, A. Sunesson and S. Svanberg, Opt Letters, 12: 704 (1988)CrossRefGoogle Scholar
  29. 29.
    H. Edner, G. W. Faris, A. Sunesson and S. Svanberg, Appl. Opt., 28: 921 (1989)CrossRefGoogle Scholar
  30. 30.
    H. Edner, P. Ragnarsson, S. Svanberg and E. Wallinder, “Vertical ozone probing with Lidar”, Nordic Symposium on Atmospheric Chemistry, Helsinki, Dec. 6–8 (1989)Google Scholar
  31. 31.
    O. Uchino, M. Togunaga, M. Maeda and Y. Miyazoe, Opt. Lett., 8: 347 (1983)CrossRefGoogle Scholar
  32. 32.
    J. Werner, K. W. Rothe and H. Walther, Appl. Phys., B32: 113 (1983)CrossRefGoogle Scholar
  33. 33.
    G. Megie, G. Ancellet and J. Pelon, Appl. Opt., 24: 3454 (1985)CrossRefGoogle Scholar
  34. 34.
    H. Edner, S. Svanberg, L. Uneus and W. Wendt, Opt. Lett., 9: 493 (1984)CrossRefGoogle Scholar
  35. 35.
    P. S. Andersson, S. Montan and S. Svanberg, IEEE J. Quant. Electron., QE-23: 1798 (1987)Google Scholar
  36. 36.
    P. Ragnarsson, “Spectroscopic imaging of effluent gases”, Diploma paper, Lund Reports on Atomic Physics LRAP-83 (1988)Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • S. Svanberg
    • 1
  1. 1.Department of PhysicsLund Institute of TechnologyLundSweden

Personalised recommendations