Advertisement

Polymer Gels pp 111-125 | Cite as

Cytoskeletons are Functionally Differentiated in the Squid Giant Axon

  • Gen Matsumoto
  • Michinori Ichikawa
  • Takao Arai

Abstract

The neuron is a highly differentiated cell for receiving, processing, conducting and transmitting signals. Morphologically distinguishable portions, such as the cell body, dendrites and the axon, are functionally differentiated for this task. The squid giant axon has long been used for physiological and biochemical studies of the various functional sites in the neuron because of its exceptional large size. Most studies have concentrated on the axonal transport and impulse conduction. The central part of the giant axon, the central axoplasm, can easily be extruded with a tiny roller without loss of its electrical excitability and large amounts of transported vesicles are observed in the central axoplasm. These facts suggest that (1) the central axoplasm is functionally differentiated from the peripheral axoplasm, the axoplasm remaining in the axon after the extrusion, and (2) the both parts have distinct rheological properties (for review see Matsumoto et al., 1989).

Keywords

Actin Filament Axonal Transport Optic Lobe Cortical Microtubule Stable Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, R.D., Allen, N.S., & Travis, J.L. (1981) Cell Motil. 1, 291–302.PubMedCrossRefGoogle Scholar
  2. Arai, T. (1983) FEBS Lett, 155, 273–276.PubMedCrossRefGoogle Scholar
  3. Arai, T., Ichikawa, M., & Matsumoto, G. (1988) in Dynamics of Microtubules, (Hotani, H., ed.), pp.260–282, The Taniguchi Fundation, Kyoto.Google Scholar
  4. Arai, T. & Matsumoto, G. (1988a) J. Neurochem. 51 1825–1838.PubMedCrossRefGoogle Scholar
  5. Arai, T. & Matsumoto, G. (1988b) Hybridoma 7, 583–593.PubMedCrossRefGoogle Scholar
  6. Arai, T. & Matsumoto, G. (1989) J. Neurochem. 52, 93–100.PubMedCrossRefGoogle Scholar
  7. Cleveland, D.W., Fisher, S.G., Kirschner, M.W., & Laemmli, U.K. (1977) J. Biol. Chem. 252, 1102–1106.Google Scholar
  8. Cleveland, D.W., & Sullivan, K.F. (1985) Ann. Rev. Biochem. 54, 331–365.Google Scholar
  9. Condeelies (1983) in Modern Cell Biology, Vol.2, (Satir, P., ed.) pp.225–240, Alan R. Liss, New York.Google Scholar
  10. Fulton, C, & Simpson, P.A. (1986) in Cell Motility. (Goldman, R., Polland, T., & Rosenbaum, J., eds), pp.987–1005, Cold Spring Harber Laboratory, New York.Google Scholar
  11. Galfre, G., Howe, S.C., Milstein, C, Butcher, G.W., & Howard, J.C. (1977) Nature, 266. 550–552.PubMedCrossRefGoogle Scholar
  12. Gilbert, S.P., & Sloboda, R.D. (1986) J. Cell Biol. 101, 947–965.CrossRefGoogle Scholar
  13. Ichikawa, M., & Matsumoto, G. (1986) in Proceedings of the First International Symposium for Science on Form (Ishizaka, S. ed.), pp.85–90. KTK Scientific Publishers, Tokyo.Google Scholar
  14. Kobayashi, T., Tsukita, S., Tsukita, S., Yamamoto, Y., & Matsumoto, G. (1986) J. Cell Biol. 102, 1699–1709.PubMedCrossRefGoogle Scholar
  15. Laemmli, U.K. (1970) Nature 221, 680–685.CrossRefGoogle Scholar
  16. Lehrer, S.S. (1980) J. Cell Biol. 90, 459–466.CrossRefGoogle Scholar
  17. Matsumoto, G., & Shimada, J. (1980) Biol.Bull. 159, 319–324.CrossRefGoogle Scholar
  18. Matsumoto, G., Tsukita, S., & Arai, T. (1989) inCell Movement. Vol.2: Kinesinand Microtubule-Associated Proteins (Warner, F.D., Mcintosh, J.R., eds.). pp.335–356, Alan R. Liss, New York.Google Scholar
  19. Maupin, P. & Pollard, T.D. (1983) J. Cell Biol. 96, 51–62.PubMedCrossRefGoogle Scholar
  20. McDonald, K. (1984) J. Ultrastruct. Res. 86, 107–118.PubMedCrossRefGoogle Scholar
  21. McKiethan, T.W., & Rosenbaum, J.L. (1984) in Cell and Muscle Motility(Shay, J.W., ed.). pp.255–288, Plenum Press, New York.Google Scholar
  22. Miller, R.H., Lasek, R.J., & Katz, M.J. (1987) Science 235, 220–222.PubMedCrossRefGoogle Scholar
  23. Morris, J.R., & Lasek, R.J. (1982) J. Cell Biol. 22, 192–198.CrossRefGoogle Scholar
  24. Murofushi, H., Minami, Y., Matsumoto, G., & Sakai, H. (1983) J. Biochem. 91, 639–650.Google Scholar
  25. Porter, K.R. (1976) in Cell Motility. (Goldman, R., Pllard, T., & Rosenbaum, J., eds.) p.1, Cold Sprin Harber Laboratory, New York.Google Scholar
  26. Sakai, H., & Matsumoto, G. (1978) J. Biochem. 81, 1413–1422.Google Scholar
  27. Schliwa, M. (1986) in Cell Biology Monographs. Vol.13: The Cytoskeleton. An Introductory Survey. Springer-Verlag, Heidelberg.Google Scholar
  28. Small, T.V. (1981) J. Cell Biol., 91, 695–705.PubMedCrossRefGoogle Scholar
  29. Towbin, EL, Staehelin, T., & Gordon, J. (1979) Proc. Natl. Acad. Sci. USA 76, 4350–5354.PubMedCrossRefGoogle Scholar
  30. Tsukita, S., Tsukita, S., Kobayashi, T., & Matsumoto, G. (1986) J. Cell Biol. 102. 1710–1725.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Gen Matsumoto
    • 1
  • Michinori Ichikawa
    • 1
  • Takao Arai
    • 2
  1. 1.Electrotechnical LaboratoryTsukubaJapan
  2. 2.Institute of Basic Medical SciencesUniversity of TsukubaTsukuba, IbarakiJapan

Personalised recommendations