Interactions between Solvent Molecules and Networks in Biogels —Viscoelasticity, Strength—

  • Kunio Nakamura


It has long been known that the rheological properties of gels are affected by the interactions between solvent molecules and networks. The nature and properties of these interactions have been studied extensively during the last 40 years, and in many types of gel systems the frameworks of gel can now be predicted reasonably. The objective of this report was to investigate the relationship between dynamic viscoelastic properties and gelation.


Loss Tangent Polymethacrylic Acid Dynamic Mechanical Property Zener Model Complex Compliance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. H. Hermans, Gels, in: “Colloid Science”, H. R. Kryst, ed., Elsevier New York (1949).Google Scholar
  2. 2.
    J. Brooks and H. P. Hale, The Mechanical Properties of the Thick White of the Henfs Egg, Biochim. Biophys. Acta, 37:237 (1959).CrossRefGoogle Scholar
  3. 3.
    W. F. Hoist and H. J. Alquist, Measurements of Deterioraction in the Stored Hen’s Egg, Higardia, 6:49 (1931).Google Scholar
  4. 4.
    K. Nakamura, T. Ishii, and H. Uedaira, The Dynamic Mechanical Properties of the Thick White of Hen’s Egg by Magnetic Microrheometer, J. Jpn. Soc. Biorheol. 2:207 (1988).Google Scholar
  5. 5.
    M. Djabourov, J. Leblond, and P. Papan, Gelation of Aqueous Gelatin Solutions. II. Rheology of the Sol-Gel Transition, J. Phys.,49:333(1988).CrossRefGoogle Scholar
  6. 6.
    C-Y M. Tung and P. J. Dynes, Relationship between Viscoelastic Properties and Gelation in Thermosetting Systems, J. Appl. Polym. Sci. , 27:569 (1982).CrossRefGoogle Scholar
  7. 7.
    E. J. Bles, The Life History of Xanopus laevis, Trans. Roy. Soc. Edin., 41:789 (1905).Google Scholar
  8. 8.
    E. J. Carrol, Jr and J. L. Hedrick, Hatching in the Toad Xenopus laevis: Morphological Events and Evidence for a Hatching Enzyme, Developmental Biology, 38:1 (1974).CrossRefGoogle Scholar
  9. 9.
    T. Norton, D. M. Goodall, S. A. Frangou, E. R. Morris, and D. A. Rees, Mechanism and Dynamics of Conformational Ordering in Xanthan Polysaccharide, J. Mol. Biol. 175:371 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Rinaudo and M. Milas, Polyelectrolyte Behavior of a Bacterial Polysaccharide from Xanthmonas campestris. Biopolymers. 17:2663 (1978).CrossRefGoogle Scholar
  11. 11.
    T. Sato, T. Norisue, and H. Fujita, Double stranded helix of Xanthan, Macromolecules, 17:2696 (1984).CrossRefGoogle Scholar
  12. 12.
    T. Lim, J. T. Uhl, and R. K. Prudfhomme, Rheology of Self-Associating Concentrated Xanthan Solutions, J. Rheology, 28:367 (1984).CrossRefGoogle Scholar
  13. 13.
    P. J. Whitcomb and C. W. Macosco, Rheology of Xanthan Gum, J. Rheology22:493 (1978).CrossRefGoogle Scholar
  14. 14.
    G. Holtzwarth, conformation of the extracellular Polysaccharide of Xanthmonas campestris, Biochem., 15:4333 (1976).CrossRefGoogle Scholar
  15. 15.
    R. K. Richardson and S. B. Ross-Murphy, Non-linear Viscoelasticity of Polysaccharide Solutions. 2: Xanthan Polysaccharide Solutions, Int.J. Biol. Macromol.,9:257 (1987).CrossRefGoogle Scholar
  16. 16.
    M. Tokita, Y. Fujiya, and K. Hikichi, Dynamic Viscoelasticity of., Bovine Vitreous Body, Biorheol. 21:751 (1984).Google Scholar
  17. 17.
    K. R. J. Austen, D. MGoodall, Anion Effects on Equilibria and Kinetics of the Order-Disorder Transition of K-Carrageenan, Biopolym., 27:139 (1988).CrossRefGoogle Scholar
  18. 18.
    F. Chambon and H. Winter, Stopping of Crosslinking Reaction in PDMS Polymer at the Gel Point, Polym. Bull.,13:499 (1985).CrossRefGoogle Scholar
  19. 19.
    W. Hess, T. A. Vilgis, and H. H. Winter, Dynamical Critical Behavior during Chemical Gelation and Vulcanization, Macromolecules,21:2536(1988).Google Scholar
  20. 20.
    W. Liu, T. Norisue, and H. Fujita, Thermally Induced Conformational Change of Xanthan in 0.01 M Aqueous Sodium Chloride, Carbohydr. Research, 160:267 (1987).CrossRefGoogle Scholar
  21. 21.
    T. Tanaka, G. Swislow, and I. Ohmine, Phase Separation and Gelatin Gels, Phys. Rev. Lett., 42:1556 (1979).CrossRefGoogle Scholar
  22. 22.
    K. Kawanishi, M. Komatsu, and T. Inoue, Thermodynamic Consideration of the Sol-Gel Transition in Polymer Solutions, Polym.,28:980 (1987).CrossRefGoogle Scholar
  23. 23.
    J. Eliassaf and A. Silberberg, The Gelation of Aqueous Solutions of Polymethacrylic Acid, Polymer,3:555 (1962).CrossRefGoogle Scholar
  24. 24.
    T. Itoh, K. Nakamura, and T. Nakagawa, Manuscript in Preparation.Google Scholar
  25. 25.
    A. Ajji, L. Chopplin, and R. E. PrudHomme, Rheology and Phase Separation in Polystyrene/Poly(Vinyl Methyl Ether)Blends, J. Polym. Sci., Polym. Phys., 26:2279(1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Kunio Nakamura
    • 1
  1. 1.Department of Polymer ScienceHokkaido UniversitySapporoJapan

Personalised recommendations