Polymer Gels pp 319-338 | Cite as

Diffusion-reaction through Coated Gel Containing Enzyme Effects of Asymmetry and Sol-Gel Transition

  • Masakatsu Yonese
  • Kazuhiko Baba
  • Hideki Murabayashi


Diffusion-reactions through coated gels containing an enzyme were studied from basical point of views by using a multimembrane, consisting of an enzyme layer sandwiched between support films. An urease and a glucoamylase were used as enzymes, and alginates (Alg) gelled by adding Ca2+ ions were used as an adding polymer. By measuring membrane potentials of the multimembranes, the changes of the charge densities due to the sol-gel transition of Alg were discussed and the network effects were found to enhance the Ca ion bindings. Total effluxes and efflux ratioes of products through the multimembrane were studied, and effects of adding Alg, its sol-gel transition and of the asymmetries on the diffusion-reactions were discussed.


Anion Exchange Membrane Efflux Ratio Support Film Total Efflux Donnan Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    M. Yonese, Pharm. Tech. Japan, in press.Google Scholar
  2. (2).
    T. Tanaka, D. Fillmore, S.-T. Sun, I. Nishino, G. Swislow, A. Shah,Phys. Review Letter, 45, 1636 (1980).CrossRefGoogle Scholar
  3. (3).
    Y. Osada, M. Hasebe, Chemistry Letter, 1285 (1985).Google Scholar
  4. (4).
    K. lshihara, M. Kobayashi, I. lshihara, Maoromol. Chem. Rapid. Commun., 4, 327 (1983).CrossRefGoogle Scholar
  5. (5).
    G. Brown, D. Thomas, E. Selegny,J. Memb. Biol., 8, 313 (1972).CrossRefGoogle Scholar
  6. (6).
    M. Yonese, H. Murabayashi, H. Kishimoto, J. Memb. Sci., in press.Google Scholar
  7. (7).
    M. Yonese, K. Baba, H. Kishimoto, Bull. Chem. Soc. Jpn., 61, 1857 (1988).CrossRefGoogle Scholar
  8. (8).
    E.R. Morris, D.A. Rees, D. Thorn, Carbohydr. Res., 81, 305 (1980).CrossRefGoogle Scholar
  9. (9).
    H. Grasdalen, B. Larsen, O. Smidsrod, Carbohydr. Res., 68, 23 (1979).CrossRefGoogle Scholar
  10. (10).
    J. Kiellnd, J. Ame. Chem. Soc., 59, 1675 (1937).CrossRefGoogle Scholar
  11. (11).
    P. Henderson,Z. Physik. Chem., 59, 118 (1907).Google Scholar
  12. (12).
    M. Yonese, M. Nakagaki, IAKUGAKU ZASSHI, 101, 493 (1981).Google Scholar
  13. (13).
    M. Yonese, K. Baba, H. Kishimoto, Bull. Chem. Soc. Jpn., 61, 1107 (1988).Google Scholar
  14. (14).
    D.A. Morris, D.A. Rees, D. Thorn., Carbohydr.Res., 66, 143 (1978).CrossRefGoogle Scholar
  15. (15).
    A. Katchalski, R.E. Cooper, J. Upadhyaym A. Wassermann, J.Chem.Soc., 1961.5198.Google Scholar
  16. (16).
    P.C. Hiemenz, Principles of Colloid and Surface Chemistry, Marcel Delker, Inc.. New York (1977), p145.Google Scholar
  17. (17).
    M.B. Mathews, Biochem. Biophys. Acta., 35, 9 (1959).PubMedCrossRefGoogle Scholar
  18. (18).
    L.W. Nichol, M.J. Sculley, L.D. Ward, D.J. Windzor, Arch. Bioehem. Biophys. 225, 574 (1983).CrossRefGoogle Scholar
  19. (19).
    L.W. Nichol, M.J. Sculley, L.D. Ward, D.J. Windzor, Arch. Bioehem. Biophys., 239 155 (1985).CrossRefGoogle Scholar
  20. (20).
    R. Goldman, O. Kedem, I.H. Silman, S.R. Carplan, E. Katchalski, Biochemistry, 7, 486 (1968).PubMedCrossRefGoogle Scholar
  21. (21).
    R. Goldman, O. Kedem, E. Katchalski, Biochemistry, 7, 4518 (1968).PubMedCrossRefGoogle Scholar
  22. (22).
    J.H. Wang, J. Ame. Chem. Soc., 76, 4755 (1954).CrossRefGoogle Scholar
  23. (23).
    M. Nakagaki, M. Yonese, IAKUGAKU ZASSHI, 94, 1170 (1974).Google Scholar
  24. (24).
    G.B. Tanny, O. Kedem, E. Selegny, J. Memb. Sci., 4, 363 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Masakatsu Yonese
    • 1
  • Kazuhiko Baba
    • 1
  • Hideki Murabayashi
    • 1
  1. 1.Faculty of Pharmaceutical SciencesNagoya City UniversityMizuho-ku, NagoyaJapan

Personalised recommendations