Physical Gelation of Synthetic and Biological Macromolecules

  • Simon B. Ross-Murphy


Historically, polymer networks can be divided into two main classes, chemically cross-linked materials (including bulk elastomers), and ‘entanglement networks’. The latter are formed by the topological interaction of polymer chains, either in the melt or in solution when the product of concentration and molecular weight becomes greater than some critical molecular weight Me.1,2 In this case they behave as ‘pseudo gels’ at frequencies higher (timescales shorter) than the lifetime of the topological entanglements. This depends for linear chains on Mr 3, where Mr is molecular weight. The covalently cross-linked materials, on the other hand, are formed by a variety of routes including cross-linking high molecular weight linear chains, either chemically or by radiation, by end-linking reactant chains with a branching unit, or by step-addition polymerisation of oligomeric multifunctional precursors. They are true macromolecules, where the molecular weight is nominally infinite, and they therefore possess an infinite relaxation time and an equilibrium modulus.1


Junction Zone Elsevier Apply Topological Entanglement Equilibrium Modulus Trans Decalin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.D. Ferry “Viscoelastic Properties of Polymers” 3rd Edn. John Wiley, New York (1980)Google Scholar
  2. 2.
    M. Doi and S.F. Edwards “The Theory of Polymer Dynamics” Clarendon, Oxford (1986)Google Scholar
  3. 3.
    P.G. de Gennes “Scaling Concepts in Polymer Physics”, Cornell U.P., Ithaca, N.Y. (1979)Google Scholar
  4. 4.
    E. Tsuchida and K. Abe, Adv. Polym. Sci. 45:1 (1982)CrossRefGoogle Scholar
  5. 5.
    A.H. Clark and S.B. Ross-Murphy, Adv. Polym. Sci. 83:60 (1987)Google Scholar
  6. 6.
    W. Burchard, R. Stadler, L.L. Freitas, M. Moller, J. Omeis and E. Miihleisen, in: “Biological and Synthetic Polymer Networks” O. Kramer ed. Elsevier Applied Science, London (1988) p.3CrossRefGoogle Scholar
  7. 7.
    W. Burchard and S.B. Ross-Murphy, eds. “Physical Networks — Polymers and Gels” Elsevier Applied Science, London (1990)Google Scholar
  8. 8.
    R. Stadler and L. de Lucca Freitas, Colloid Polym. Sci. 264:773 (1986)CrossRefGoogle Scholar
  9. 9.
    R. Stadler and L. de Lucca Freitas, in: “Physical Networks — Polymers and Gels” W. Burchard and S.B. Ross-Murphy, eds., Elsevier Applied Science, London (1990) p.91Google Scholar
  10. 10.
    T.E. Newlin, S.E. Lovell, P.R. Saunders and J.D. Ferry, J. Colloid Sci. 17:10 (1962)CrossRefGoogle Scholar
  11. 11.
    T.P. Stossel, P.A. Janmey and K.S. Zaner, in: “Cyto-mechanics” J. Bereiter-Hahn, O.R. Anderson and W.E. Reif, eds., Springer, Berlin (1987)Google Scholar
  12. 12.
    D.A. Rees, Adv. Carbohydr. Chem. Biochem. 24:267 (1969)PubMedCrossRefGoogle Scholar
  13. 13.
    A. Coniglio, H.E. Stanley and W. Klein, Phys. Rev. B 25:6805 (1982)CrossRefGoogle Scholar
  14. 14.
    M. Kurata “Thermodynamics of Polymer Solutions” Harwood Academic, New York, N.Y. (1982)Google Scholar
  15. 15.
    J. Arnauts and H. Berghmans, Polymer Commun. 28:66 (1987)Google Scholar
  16. 16.
    W.G. Miller, L. Kou, K. Tokyama and V. Voltaggio, J. Polym. Sci.(Symp) C65:91 (1978)Google Scholar
  17. 17.
    A. Hill and A.M. Donald, Polymer 29:1426 (1987)CrossRefGoogle Scholar
  18. 18.
    J.D. Ferry and J.E. Eldridge, J. Phys. Chem. 53:184 (1949)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Simon B. Ross-Murphy
    • 1
  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations