Advertisement

Polymer Gels pp 257-270 | Cite as

Contraction Behavior of Poly(acrylonitrile) Gel Fibers

  • Susumu Umemoto
  • Norimasa Okui
  • Tetsuya Sakai

Abstract

The properties of volume change of gel stimulated by solvent, pH, ionic strength, temperature, electric power and so on have been dealt with the attracted subjects by many investigators1~19. Especially, the mechanisms of volume change in gels by solvent composition and temperature have roused many researchers from the observation of the phase transition phenomena of the gel systems 6~8. In the case of the volume change caused by pH, ionic strength and ion concentrations, theoretical and experimental considerations on swelling of ionic gels have been represented by Flory1, Kachalsky 2~4 and the other researchers 17~19. It has been pointed out that the contractile force of the network, the electrostatic interactions and the interactions between polymer chain and solvent play an important role of the swelling. Recently, Tanaka and co-workers 14, 15 investigated the swelling behavior of weakly charged ionic gels, such as polyacrylamide-acrylic acid copolymer gel, by the quantitative consistency of the Donnan theory. And they showed that the changes in swelling occurred at the predicted ion concentrations in the solutions.

Keywords

Ionic Strength Contraction Force Collapse State Artificial Muscle Isometric State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Flory, Principles of Polymer Chemistry (Cornell University, Ithaca, 1953), Chap. 13.Google Scholar
  2. 2.
    W. Kuhn and A. Katchalsky, Nature, 165, 4196 (1950)CrossRefGoogle Scholar
  3. 3.
    A. Katchalsky and H. Eisenberg, Nature, 166, 267 (1950)PubMedCrossRefGoogle Scholar
  4. 4.
    A. Katchalsky and M. Zwick, J. Polym. Sci., 16, 221 (1955)CrossRefGoogle Scholar
  5. 5.
    M. Y. Sussmann and A. Katchalsky, Science, 167, 45 (1970)CrossRefGoogle Scholar
  6. 6.
    K. Dusek and D. Patterson, J. Polym. Sci., A-2, 6, 1209 (1968)Google Scholar
  7. 7.
    T. Tanaka, D. Fillmore, S. T. Sun, I. Nishio, G. swislow and A. Shah, Phys. Rev. Lett., 45, 20, 1636 (1980)CrossRefGoogle Scholar
  8. 8.
    H. Vink, Acta Chemica Scandinavica, A-37, 187 (1983)CrossRefGoogle Scholar
  9. 9.
    T. Tanaka, S. Ishiwata and C. Ishimoto, Phys. Rev. Lett., 38, 14, 771 (1977)CrossRefGoogle Scholar
  10. 10.
    T. Tanaka, Phys. Rev. A, 17, 2, 763 (1978)CrossRefGoogle Scholar
  11. 11.
    T. Tanaka and D. J. Fillmore, J. Chem. Phys., 70, 3, 1214 (1979)CrossRefGoogle Scholar
  12. 12.
    T. Tanaka, Physica, 140A, 261 (1986)Google Scholar
  13. 13.
    I. Ohmine and T. Tanaka, J. Chem. Phys., 77, 11, 5725 (1982)CrossRefGoogle Scholar
  14. 14.
    J. Ricka and T. Tanaka, Macromolecules, 17, 1, 2916 (1984)CrossRefGoogle Scholar
  15. 15.
    J. Ricka and T. Tanaka, Macromolecules, 18, 83 (1985)CrossRefGoogle Scholar
  16. 16.
    T. Tanaka, I. Nishio, S. T. Sun and S. Ueno-Nishio, Science, 218, 29, 467 (1982)PubMedCrossRefGoogle Scholar
  17. 17.
    M. Ilavsky, Macromolecules, 15, 782 (1982)CrossRefGoogle Scholar
  18. 18.
    M. Ilavsky and J. Hrouz, Polym. Bull., 9, 159 (1983)CrossRefGoogle Scholar
  19. 19.
    Y. Osada, Y. Saito, Makromol. Chem., 176, 2761 (1975)CrossRefGoogle Scholar
  20. 20.
    P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University, Ithaca, 1979), Chap. 5.Google Scholar
  21. 21.
    T. Uchida, et al., Proc. 10th Biennial Carbon Conf., 31 (1971)Google Scholar
  22. 22.
    K. Miyachi and R. D. Andrews, Appl. Polym. Symposia, 25, 127 (1974)Google Scholar
  23. 23.
    G. F. Fanta, J. Appl. Polym. Sci., 24, 9, 2015 (1979)CrossRefGoogle Scholar
  24. 24.
    G. F. Fanta, J. Polym. Sci., 23, 229 (1971)Google Scholar
  25. 25.
    Japan Patents, 52–9095 (1977)Google Scholar
  26. 26.
    T. Matsumura, S. Umemoto, N. Okui and T. Sakai, Reports on Progress in Polym. Phys. in Japan, 30, 323 (1987)Google Scholar
  27. 27.
    S. Umemoto, Y. Itoh, N. Okui and T. Sakai, Reports on Progress in Polym. Phys. in Japan, 31, 295 (1988)Google Scholar
  28. 28.
    S. Hatano, J.Mechanochem. and Cell Motility, 1, 75, (1972)Google Scholar
  29. 29.
    Cold Spring Harbor Symposia on Quantitative Biology, 37, The Mechanism of Muscle Contraction (Yurinsha, 1973)Google Scholar
  30. 30.
    R. M. Fuoss, H. Sadek, Science, 110, 552 (1949)PubMedCrossRefGoogle Scholar
  31. 31.
    A. Nakajima, H. Sato, Biopolymers, 11, 1345 (1972)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Susumu Umemoto
    • 1
  • Norimasa Okui
    • 1
  • Tetsuya Sakai
    • 1
  1. 1.Department of Organic and Polymeric MaterialsTokyo Institute of TechnologyMeguro-ku, TokyoJapan

Personalised recommendations