Advertisement

Polymer Gels pp 147-157 | Cite as

Electric Modulation of Polymer Gel Contraction and Animal cell Proliferation

  • Hiroaki Shinohara
  • Masashi Yaoita
  • Yoshihito Ikariyama
  • Masuo Aizawa

Abstract

Modulation of gel morphology of synthetic polymer and biopolymer upon low potential application was investigated. Morphology of polymethacrylic acid (PMAA)-Ca2+ chelate microgels has been electrically modulated on a conducting polymer film-coated electrode. The electrode induced a drastic change of ion flux in the vicinity of the conducting polymer film without any water electrolysis, which caused the PMAA-Ca2+ microgels to change rapidly their shape. Electric effects on animal cells cultured on an electrode were also investigated in this line of study. Morphology and proliferation of HeLa cell was dependent on electrode potential during culture. The modulation mechanism is interpreted in relation to the structural change in cytoskeletal gel composed of F-actin.

Keywords

HeLa Cell Potential Step Water Electrolysis Electric Modulation Polypyrrole Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.Kuhn, B.Hargitay, A.Katchlsky, and H.Eisenberg, Nature, 165, 514 (1950).CrossRefGoogle Scholar
  2. 2.
    M.V.Sussman and A.Katchalsky, Science, 167, 45 (1970).PubMedCrossRefGoogle Scholar
  3. 3.
    Y.Osada and Y.Takeuchi, J. Polym. Sci., Polym. Lett. Ed., 19, 303 (1981).CrossRefGoogle Scholar
  4. 4.
    R.Kishi and Y.Osada, J. Chem. Soc., Faraday Trans., 1, 85, 655 (1989).Google Scholar
  5. 5.
    A.Fragala, J.Enos, A.Lalone, and J.Boyack, Electrochim. Acta, 17, 1507 (1972).CrossRefGoogle Scholar
  6. 6.
    D.E.DeRossi, P.Chiarell, G.Buzzigoli, and C.Domenici, Trans. Am. Soc. Artif. Intern. Organs, 32, 157 (1986).Google Scholar
  7. 7.
    T.Tanaka, I.Nishino, S-I.Sun, and S.Ueno-Nishino, Science, (Washington,D. C), 218, 467 (1982).CrossRefGoogle Scholar
  8. 8.
    Y.Osada and M.Hasebe, Chem. Lett., 1285 (1982).Google Scholar
  9. 9.
    I.V. Yannas and A.J. Grodzinsky, J. Mechanochem. Cell Motility, 2, 113 (1973).Google Scholar
  10. 10.
    H.Shinohara, M.Aizawa, and H.Shirakawa, J. Chem. Soc, Chem. Commun., 87 (1986).Google Scholar
  11. 11.
    H.Shinohara, J.Kojima, and M.Aizawa, J. Electroanal. Chem., 266, 297 (1989).CrossRefGoogle Scholar
  12. 12.
    M.Aizawa, T.Toyoshima, M.Yaoita, and Y.Ikariyama, Nihon Kagaku-Kaishi (J. Chem. Soc. Jpn. ), 1985, 1302 (1985).CrossRefGoogle Scholar
  13. 13.
    T.A.McCoy, M.Mcxwell, and P.F.Kruse, Proc. Soc. Exp. Biol., 100, 115 (1959).PubMedGoogle Scholar
  14. 14.
    P.A. Amats, E.R.Unanue, and D.L.Taylor, J. Cell Biol., 96, 1032 (1977).Google Scholar
  15. 15.
    H.Shinohara and M.Aizawa, Kobunshi Ronbunshuu, 46, 703 (1989).CrossRefGoogle Scholar
  16. 16.
    M.Yaoita, Y.Ikariyama, H.Shinohara and M.Aizawa, DENKI KAGAKU, 56, 1086 (1988).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Hiroaki Shinohara
    • 1
  • Masashi Yaoita
    • 1
  • Yoshihito Ikariyama
    • 1
  • Masuo Aizawa
    • 1
  1. 1.Department of Bioengineering, Faculty of EngineeringTokyo Institute of TechnologyMeguro-ku, TokyoJapan

Personalised recommendations