Pathogenesis and Immunology of Herpesvirus Infections of the Nervous System

  • Anthony A. Nash
  • J. Matthias Löhr
Part of the Infectious Agents and Pathogenesis book series (IAPA)


The herpesviruses are ubiquitous in nature, infecting fish, amphibians, reptiles, birds, and mammals. They are highly successful parasites, requiring only a small host range in which to maintain an infection: typically 102–103 individuals are sufficient to maintain a varicella-zoster virus (VZV) infection in the population, compared with >105 individuals for measles virus.1 The great success of the herpesviruses is attributed to a remarkable strategy for persisting within their host, termed latency. This strategy involves the virus persisting as genetic material, but without expressing any detectable viral proteins and thereby evading host immune defenses. Although the ability to establish a latent infection is a characteristic of all herpesviruses, we consider classical latency to be a property of those viruses involved with infections of the nervous system, notably herpes simplex virus (HSV) types 1 and 2 and VZV.


Herpes Simplex Virus Herpes Simplex Virus Type Chronic Fatigue Syndrome Herpes Zoster Herpes Simplex Virus Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hope-Simpson, R. E., 1965, The nature of herpes zoster: A long term study and a new hypothesis, Proc. R. Soc. Med. 58: 9–20.PubMedGoogle Scholar
  2. 2.
    Lampert, P., Garrett, R., and Powell, H., 1977, Demyelination in allergic and Marek’s disease virus induced neuritis: Comparative electron microscopic studies, Acta Neuropathol. (Berl.) 40: 103–109.Google Scholar
  3. 3.
    Stevens, J. G., Pepose, J. S., and Cook, M. L., 1981, Marek’s disease: A natural model for the Landry—Guillain—Barré syndrome, Ann. Neurol. [Suppl.] 9: 102.PubMedGoogle Scholar
  4. 4.
    McGeoch, D. J., Dolan, A., Donald, S., and Rixon, E. J., 1985, Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1, J. Mol. Biol. 181: 1–13.PubMedGoogle Scholar
  5. 5.
    McGeoch, D. J., Dalrymple, M. A., Davison, A. J., Dolan, A., Frame, M. C., McNab, D., Perry, L. J., Scott, J. E., and Taylor, P., 1988, The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1, J. Gen. Virol. 69: 1531–1574.PubMedGoogle Scholar
  6. 6.
    Roizman, B., and Batterson, W, 1985, Herpesviruses and their replication, in: Virology ( B. N. Fields, J. L. Melnick, B. Roizman, and R. E. Shope, eds.), Raven Press, New York, pp. 497–526.Google Scholar
  7. 7.
    Marsden, H. S., 1987, Herpes simplex virus glycoproteins and pathogenesis, in: Molecular Basis of Virus Disease, S.G.M. Symposium 40 ( W. C. Russell and J. W Almond, eds.), Cambridge University Press, London.Google Scholar
  8. 8.
    Lopez, C., 1985, Natural resistance mechanisms in herpes simplex virus infections, in: The Herpes Viruses, Volume 4 ( B. Roizman and C. Lopez, eds.), Plenum Press, New York, pp. 37–68.Google Scholar
  9. 9.
    Simmons, A., 1989, H-2 linked genes influence the severity of herpes simplex virus infection of the peripheral nervous system, J Exp. Med. 169: 1503–1507.PubMedGoogle Scholar
  10. 10.
    Rawls, W. E., 1985, Herpes simplex virus, in: Virology ( B. N. Fields, D. M. Knipe, and R. M. Channock, eds.), Raven Press, New York, pp. 527–561.Google Scholar
  11. 11.
    Hill, T. J., Field, H. J., and Blyth, W A., 1975, Acute and recurrent infection with herpes simplex virus in the mouse: A model for studying latency and recurrent disease, J Gen. Viral. 28: 341–353.Google Scholar
  12. 12.
    Simmons, A., and Nash, A. A., 1984, Zosteriform spread of herpes simplex virus as a model of recrudescence and its use to investigate the role of immune cells in prevention of recurrent disease, J. Virol. 52: 816–821.PubMedGoogle Scholar
  13. 13.
    Wildy, P., Field, H. J., and Nash, A. A., 1982, Classical herpes latency revisited, in: Virus Persistence ( B. W. J. Mahy, A. C. Minson, and G. K. Darby, eds), Cambridge University Press, Cambridge, pp. 133–167.Google Scholar
  14. 14.
    Wildy, P., and Gell, P. G. H., 1985, The host response to herpes simplex virus, Br. Med. Bull. 41: 86–91.PubMedGoogle Scholar
  15. 15.
    Richards, J. T, Kern, E. R., Overall, J. O., and Glasgow, L. A., 1981, Differences in neurovirulence among isolates of herpes simplex virus types 1 and 2 in mice using four routes of infection, J Infect. Dis. 144: 464–471.PubMedGoogle Scholar
  16. 16.
    Nahmias, A. J., Whitley, R. J., Visintine, A. N., Takei, Y., and Alford, C. A., 1982, Herpes simplex encephalitis: Laboratory evaluations and their diagnostic significance, J Infect. Dis. 145: 829–836.PubMedGoogle Scholar
  17. 17.
    Goodpasture, E. W, and Teague, O., 1923, Transmission of the virus of herpes along nerves in experimentally infected rabbits, J Med. Res. 44: 139–184.PubMedGoogle Scholar
  18. 18.
    Blyth, W. A., Harbour, D. A., and Hill, T. J., 1984, Pathogenesis of zosteriform spread of herpes simplex virus in the mouse, J Gen. Virol. 65: 1477–1486.PubMedGoogle Scholar
  19. 19.
    Shimeld, C., Tullo, A. B., Hill, T. J., Blyth, W. A., and Easty, D. L., 1985, Spread of herpes simplex virus and distribution of latent infection after intraocular infection of the mouse, Arch. Virol. 85: 175–187.PubMedGoogle Scholar
  20. 20.
    Löhr, M., Nelson, J. A., and Oldstone, M. B. A., 1990, Is herpes simplex virus associated with peptic ulcer disease, J. Virol. 64: 2168–2174.PubMedGoogle Scholar
  21. 21.
    Ugolini, G., Kuypers, H. G. M., and Strick, P. L., 1989, Transneural transfer of herpes simplex virus from peripheral nerves to cortex and brainstem, Science 243: 89–91.PubMedGoogle Scholar
  22. 22.
    Hill, T. J., 1982, Herpes simplex virus latency, in: The Herpes Viruses, Volume 3 (B. Roizman, ed.), Plenum Press, New York, pp. 175–240.Google Scholar
  23. 23.
    Klein, R. J., 1976, Pathogenetic mechanisms of recurrent herpes simplex viral infections, Arch. Virol. 51: 1–13.PubMedGoogle Scholar
  24. 24.
    Stevens, J., 1980, Herpetic latency and reactivation, in: Oncogenic Viruses, Volume 2 ( E Rapp, ed.), CRC Press, Boca Raton, Fl, pp. 1–11.Google Scholar
  25. 25.
    Roizman, B., and Sears, A. E., 1987, An inquiry into the mechanisms of herpes simplex virus latency, Annu. Rev. Microbiol. 41: 543–571.PubMedGoogle Scholar
  26. 26.
    Cook, M. L., Bastone, V. B., and Stevens, J. G., 1974, Evidence that neurons harbor latent herpes simplex virus, Infect. Immun. 9: 946–951.PubMedGoogle Scholar
  27. 27.
    Rock, D. L., and Fraser, N. W, 1983, Detection of HSV-1 genome in the central nervous system of latently infected mice, Nature 302: 523–525.PubMedGoogle Scholar
  28. 28.
    Efstathiou, S., Minson, A. C., Field, H. J., Anderson, J. R., and Wildy, P., 1986, Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans, J. Virol. 57: 446–455.PubMedGoogle Scholar
  29. 29.
    Al-Saadi, S. A., Gross, P., and Wildy, P., 1988, Herpes simplex virus type 2 latency in the footpad of mice: Effect of acycloguanosine on the recovery of virus, J Gen. Virol. 69: 433–438.PubMedGoogle Scholar
  30. 30.
    Stevens, J. G., and Cook, M. L., 1971, Latent herpes simplex virus in spinal ganglia of mice, Science 173: 843–845.PubMedGoogle Scholar
  31. 31.
    Stevens, J. G., Wagner, E. K., Devi-Rao, G. B., Cook, M. L., and Feldman, L. T, 1987, RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons, Science 235: 1056–1059.PubMedGoogle Scholar
  32. 32.
    Stevens, J. G., Haarr, L., Porter, D. D., Cook, M. L., and Wagner, E. K., 1988, Prominence of the herpes simplex virus latency-associated transcript in trigeminal ganglia from seropositive humans, J. Infect. Dis. 158: 117–123.PubMedGoogle Scholar
  33. 33.
    Spivack, J. G., and Fraser, N. W, 1987, Detection of herpes simplex virus type 1 transcripts during latent infection in mice, J. Virol. 61: 3841–3847.PubMedGoogle Scholar
  34. 34.
    Deatly, A. M., Spivack, J. G., Lavi, E., O’Boyle, D. R. II, and Fraser, N. W, 1988, Latent herpes simplex virus type 1 transcripts in peripheral and central nervous system tissue of mice map to similar regions of the viral genome, J. Virol. 62: 749–756.PubMedGoogle Scholar
  35. 35.
    Leib, D. A., Bogard, C. L., Kosz-Vnenchak, M., Hicks, K. A., Coen, D. M., Knipe, D. M., and Schaffer, P. A., 1989, A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency, J. Virol. 63: 2893–3000.PubMedGoogle Scholar
  36. 36.
    Hill, T. J., Blyth, W. A., and Harbour, D. A., 1978, Trauma to the skin causes recurrence of herpes simplex in the mouse, J. Gen. Virol. 39: 21–28.PubMedGoogle Scholar
  37. 37.
    Spruance, S. L., Overall, J. C., Kern, E. R., Keueger, G. G., Pliam, V., and Miller, W, 1977, The natural history of recurrent herpes simplex labialis, N. Engl. J. Med. 297: 69–74.PubMedGoogle Scholar
  38. 38.
    Daniels, C. A., LeGoff, S. G., and Notkins, A. L., 1975, Shedding infectious virus/antibody complexes from vesicular lesions of patients with recurrent herpes labialis, Lancet 2: 524–528.PubMedGoogle Scholar
  39. 39.
    Scriba, M., 1975, Herpes simplex infection in guinea pigs: An animal model for studying latent and recurrent herpes simplex infection, Infect. Immun. 12: 162–165.PubMedGoogle Scholar
  40. 40.
    Hill, J., Kwon, B. A., Shimomura, Y., Colborn, G. L., Yaghmai, E, and Gangarosa, L., 1983, Herpes simplex recovery in neural tissue after ocular herpes simplex virus shedding induced by epinephrine iontophoresis to the rabbit cornea, Infect. Ophthalmol. Vis. Sci. 24: 243.Google Scholar
  41. 41.
    Wilton, J. M. A., Ivanyi, L., and Lehner, T., 1972, Cell-mediated immunity in herpesvirus hominis infections, Br. Med. J. 1: 723–726.PubMedGoogle Scholar
  42. 42.
    Baringer, J. R., 1975, Herpes simplex virus infection of nervous tissue in animals and man, Prog. Med. Virol. 20: 1–26.PubMedGoogle Scholar
  43. 43.
    Hill, T. J., 1983, Herpesviruses in the central nervous system, in: Viruses and Demyelinating Diseases ( C. A. Mims, M. L. Cuzner, and R. E. Kelly, eds.), Academic Press, London, pp. 23–45.Google Scholar
  44. 44.
    Whitley, R. J., 1984, Treatment of human herpes virus infections with special reference to encephalitis, J Antimicrob. Chemother. 14 (Suppl. A): 57–74.PubMedGoogle Scholar
  45. 45.
    Whitley, R. J., and Alford, C. A., 1982, Herpes infections in childhood: Diagnostic dilemmas and therapy, Pediatr. Infect. Dis. 1: 81–84.PubMedGoogle Scholar
  46. 46.
    Anderson, J. R., 1988, Viral encephalitis and its pathology, Curr. Top. Pathol. 76: 23–60.PubMedGoogle Scholar
  47. 47.
    Esiri, M. M., 1982, Herpes simplex encephalitis. An immunohistological study of the distribution of viral antigen within the brain, J Neurol. Sci. 54: 209–226.PubMedGoogle Scholar
  48. 48.
    Anderson, J. R., and Field, H. J., 1983, The distribution of herpes simplex type 1 antigen in mouse central nervous system after different routes of inoculation, J Neurol. Sci. 60: 181–195.PubMedGoogle Scholar
  49. 49.
    Tomlinson, A. H., and Esiri, M. M., 1983, Herpes simplex encephalitis: Immunohistochemical demonstrations of spread of virus via olfactory pathways in mice, J. Neurol. Sci. 60: 473–484.PubMedGoogle Scholar
  50. 50.
    Whitley, R., Lakeman, A. D., Nahmias, A. J., and Roizman, B., 1982, DNA restriction analysis of herpes simplex virus isolates obtained from patients with encephalitis, N. Engl. J. Med. 307: 1060–1062.PubMedGoogle Scholar
  51. 51.
    Dayan, A. D., Gooddy, W, Harrison, M. J. G., and Rudge, P., 1972, Brain stem encephalitis caused by herpes virus hominis, Br. Med. J. 4: 405–406.PubMedGoogle Scholar
  52. 52.
    Cabrera, C. V., Wholenberg, C., Openshaw, H., Rey-Mendez, M., Puga, A., and Notkins, A. L., 1980, Herpes simplex virus DNA sequences in the CNS of latently infected mice, Nature 288: 648–650.Google Scholar
  53. 53.
    Stroop, W. G., 1986, Herpes simplex virus encephalitis of the human adult: Reactivation of latent brain infection, Pathol. Immunopathol. Res. 5: 156–169.PubMedGoogle Scholar
  54. 54.
    Whitley, R. J., and Hutto, C., 1985, Neonatal herpes simplex virus infections, Pediatr. Rev. 7: 119–126.Google Scholar
  55. 55.
    Greenwood, R., Bhalla, A., Gordon, A., and Roberts, J., 1983, Behavior disturbances during recovery from herpes simplex encephalitis, J. Neurol. Neurosurg. Psychiatry 46: 809–817.PubMedGoogle Scholar
  56. 56.
    Cleobury, J. R., Skinner, G. R. B., Thouless, M. E., and Wildy, P., 1971, Association between psychopathic disorder and serum antibody to herpes simplex virus (type 1), Br. Med. J. 1: 438–445.PubMedGoogle Scholar
  57. 57.
    Vahlne, A., Edstrom, S., Arstila, P., Beran, M., Ejnall, M., Nylen, O., and Lycke, E., 1981, Bell’s palsy and herpes simplex virus, Arch. Otolaryngol. 107: 79.PubMedGoogle Scholar
  58. 58.
    Nash, A. A., Leung, K.-N., and Wildy, P., 1985, The T cell mediated immune response of mice to HSV, in: The Herpesviruses, Volume 4 ( B. Roizman and C. Lopez, eds.), Plenum Press, New York, pp. 87–102.Google Scholar
  59. 59.
    Nash, A. A., and Wildy, P., 1983, Immunity in relation to the pathogenesis of herpes simplex virus, in: Human Immunity to Viruses ( E Ennis, ed.), Academic Press, New York, pp. 179–192.Google Scholar
  60. 60.
    Bjercke, S., Elg, J., Braathen, L., and Thorsby, E., 1984, Enriched epidermal Langerhans cells are potent antigen-presenting cells for T cells, J Invest. Dermatol. 83: 286–289.PubMedGoogle Scholar
  61. 61.
    Hengel, H., Lindner, M., Wagner, H., and Heeg, K., 1987, Frequency of herpes simplex virus-specific murine cytotoxic T lymphocyte precursors in mitogen and antigen-driven primary in vitro T cell responses, J. Immunol. 139: 4196–4202.PubMedGoogle Scholar
  62. 62.
    Macatonia, S. E., Taylor, P. M., Knight, S. C., and Askonas, B. A., 1989, Primary stimulation by dendritic cells induces antiviral proliferative and cytotoxic T cell responses in vitro, J. Exp. Med. 169: 1255–1264.PubMedGoogle Scholar
  63. 63.
    Pfizenmaier, K., Starzinski-Powitz, A., Rollinghoff, M., Falke, D., and Wagner, H., 1977, T-cell mediated cytotoxicity against herpes simplex virus-infected target cells, Nature 265: 630–632.PubMedGoogle Scholar
  64. 64.
    Nash, A. A., Quartey-Papafio, R., and Wildy, P., 1980, Cell-mediated immunity in herpes simplex virus-infected mice: Functional analysis of lymph node cells during periods of acute and latent infection, with reference to cytotoxic and memory cells, J. Gen. Viral. 49: 309–317.Google Scholar
  65. 65.
    Horohov, D. W, Wyckoff, J. H. III, Moore, R. N., and Rouse, B. T., 1986, Regulation of herpes simplex virus-specific cell-mediated immunity by a specific suppressor factor, J Virol. 58: 331–338.PubMedGoogle Scholar
  66. 66.
    Schmid, D. S., 1988, The human MHC-restricted cellular response to herpes simplex virus type 1 is mediated by CD4+, CD8- T cells and is restricted to the DR region of the MHC complex, J. Immunol. 140: 3610–3616.PubMedGoogle Scholar
  67. 67.
    Nash, A. A., and Gell, P. G. H., 1983, Membrane phenotype of murine effector and suppressor T cells involved in delayed hypersensitivity and protective immunity to herpes simplex virus, Cell. Immunol. 75: 348–355.PubMedGoogle Scholar
  68. 68.
    Nash, A. A., Field, H. J., and Quartey-Papafio, R., 1980, Cell-mediated immunity in herpes simplex virus infected mice: Induction, characterization and antiviral effects of delayed type hypersensitivity, J. Gen. Virol. 48: 351–357.PubMedGoogle Scholar
  69. 69.
    Nash, A. A., Gell, P. G. H., and Wildy, P., 1981, Tolerance and immunity in mice infected with herpes simplex virus: Simultaneous induction of protective immunity and tolerance to delayed-type hypersensitivity, Immunology 43: 153–159.PubMedGoogle Scholar
  70. 70.
    Seid, J. M., Leung, K. N., Pye, C., Phelan, J., Nash, A. A., and Godfrey, H. P., 1987, Clonal analysis of the T-cell response of mice to herpes simplex virus: Correlation between lymphokine production in vitro and induction of DTH and anti-viral activity in vivo, Viral Immun. 1: 35–44.Google Scholar
  71. 71.
    Larsen, H. S., Russell, R. G., and Rouse, B. T., 1983, Recovery from lethal herpes simplex virus type 1 infection is mediated by cytotoxic T lymphocytes, Infect. Immun. 41: 197–204.PubMedGoogle Scholar
  72. 72.
    Howes, E. L., Taylor, W, Mitchison, N. A., and Simpson, E., 1979, MHC matching shows that at least two T-cell subsets determine resistance to HSV, Nature 277: 67–68.Google Scholar
  73. 73.
    Nash, A. A., Phelan, J., and Wildy, P., 1981. Cell-mediated immunity in herpes simplex virus-infected mice: H-2 mapping of the delayed-type hypersensitivity response and the antiviral T cell response, J. Immunol. 126: 1260–1262.PubMedGoogle Scholar
  74. 74.
    Nash, A. A., Jayasuriya, A., Phelan, J., Cobbold, S. P., Waldmann, H., and Prospero, T., 1987, Different roles for L3T4+ and Lyt2+ T cell subsets in the control of an acute herpes simplex virus infection of the skin and nervous system, J. Gen. Virol. 68: 825–833.PubMedGoogle Scholar
  75. 75.
    Cobbold, S. C., Jayasuriya, A., Nash, A., Prospero, T. D., and Waldmann, H., 1984, Therapy with monoclonal antibodies by elimination of T cell subsets in vivo, Nature 312: 548–551.PubMedGoogle Scholar
  76. 76.
    Yasukawa, M., and Zarling, J. M., 1985, Human cytotoxic T cell clones directed against herpes simplex virus-infected cells. III. Analysis of viral glycoproteins recognized by CTL clones by using recombinant herpes simplex viruses, J. Immunol. 134: 2679–2682.PubMedGoogle Scholar
  77. 77.
    Zarling, J. M., Moran, P. A., Burke, R. L., Pachl, C., Berman, P. W, and Lasky, L. A., 1986, Human cytotoxic T cell clones directed against herpes simplex virus-infected cells. IV. Recognition and activation by cloned glycoproteins gB and gD, J. Immunol. 136: 4669–4673.PubMedGoogle Scholar
  78. 78.
    Zarling, J. M., Moran, P. A., Lasky, L. A., and Moss, B., 1986, Herpes simplex virus (HSV)specific human T-cell clones recognize HSV glycoprotein D expressed by a recombinant vaccinia virus, J. Virol. 59: 506–509.PubMedGoogle Scholar
  79. 79.
    Blacklaws, B. A., Nash, A. A., and Darby, G., 1987, Specificity of the immune response of mice to herpes simplex virus glycoproteins B and D constitutively expressed on L cell lines, J Gen. Virol. 68: 1103–1114.PubMedGoogle Scholar
  80. 80.
    Chan, W L., Lukig, M. L., and Liew, E. Y., 1985, Helper T cells induced by an immunopurified herpes simplex virus type 1 (HSV-1) 115 kilodalton glycoprotein (gB) protect mice against HSV-1 infection, J. Exp. Med. 162: 1304–1318.PubMedGoogle Scholar
  81. 81.
    Martin, S., and Rouse, B. T., 1987, The mechanism of antiviral immunity induced by a vaccinia recombinant expressing herpes simplex virus type 1 glycoprotein D. Clearance of local infection, J Immunol. 138: 3431–3437.PubMedGoogle Scholar
  82. 82.
    Krishna, S., Blacklaws, B. A., Overton, H. A., Bishop, D. H. L., and Nash, A. A., 1989, Expression of glycoprotein D of herpes simplex virus type 1 in a recombinant baculovirus: Protective responses and T cell recognition of the recombinant-infected cell extracts, J. Gen. Virol. 770: 1805–1814.Google Scholar
  83. 83.
    Martin, S., Courtney, R. J., Fowler, G., and Rouse, B. T., 1988, Herpes simplex virus type 1-specific cytotoxic T lymphocytes recognize virus nonstructural proteins, J. Virol. 62: 2265–2273.PubMedGoogle Scholar
  84. 84.
    Townsend, A. R. M., Gotch, E. M., and Davey, J., 1985, Cytotoxic T cells recognize fragments of influenza nucleoprotein, Cell 42: 457–467.PubMedGoogle Scholar
  85. 85.
    Whitton, J. L., Southern, P. J., and Oldstone, M. B. A., 1988, Analyses of the cytotoxic T lymphocyte responses to glycoprotein and nucleoprotein components of lymphocytic choriomeningitis virus, Virology 162: 321–327.PubMedGoogle Scholar
  86. 86.
    Del Val, M., Volkmer, H., Rothbard, J. B., Jonjic, S., Messerle, M., Schickendanz, J., Reddehase, M. J., and Koszinowski, U. H., 1988, Molecular basis for cytolytic T-lymphocyte recognition of the murine cytomegalovirus immediate-early protein pp89, J Virol. 62: 3965–3972.PubMedGoogle Scholar
  87. 87.
    Shillitoe, E. J., Wilton, J. M. A., and Lehner, T, 1977, Sequential changes in cell mediated immune responses to herpes simplex virus after recurrent herpetic infections in humans, Infect. Immun. 18: 130–137.PubMedGoogle Scholar
  88. 88.
    O’Reilly, R. J., Chibbaro, A., Anger, E., and Lopez, C., 1977, Cell mediated responses in patients with herpes simplex infections. II. Infection-associated deficiency of lymphokine production in patients with recurrent herpes labialis or herpes progenitalis, J Immunol. 118: 1095–1102.PubMedGoogle Scholar
  89. 89.
    Donnenberg, A. D., Chaikof, E., and Aurelian, L., 1980, Immunity to herpes simplex virus type 2: Cell-mediated immunity in latently infected guinea pigs, Infect. Immun. 30: 99–109.PubMedGoogle Scholar
  90. 90.
    Iwasaka, T., Sheridan, J. E, and Aurelian, L., 1983, Immunity to herpes simplex virus type 2: Recurrent lesions are associated with the induction of suppressor cell and soluble suppressor factors, Infect. Immun. 42: 955–964.PubMedGoogle Scholar
  91. 91.
    Blyth, W. A., Hill, T. J., Field, H. J., and Harbour, D. A., 1976, Reactivation of herpes simplex virus infection by ultraviolet light and possible involvement of prostaglandins, J. Gen. Virol. 33: 547–550.PubMedGoogle Scholar
  92. 92.
    Howie, S. E. M., Norval, M., and Maingay, J. P., 1986, Alterations in epidermal handling of HSV-1 antigens in vitro induced by in vivo exposure to UV-B light, Immunology 57: 225–230.PubMedGoogle Scholar
  93. 93.
    Howie, S. E., Norval, M., Maingay, J., and Ross, J. A., 1986, Two phenotypically distinct T cell (Ly1+2- and Ly1–2+) are involved in ultraviolet-B light-induced suppression of the efferent DTH response to HSV-1 in vivo, Immunology 58: 653–658.PubMedGoogle Scholar
  94. 94.
    Merigan, T. C., and Stevens, D. A., 1971, Viral infections in man associated with acquired immunological deficiency states, Fed. Proc. 30: 1858–1864.PubMedGoogle Scholar
  95. 95.
    Kapoor, A. K., Nash, A. A., and Wildy, P., 1982, Pathogenesis of herpes simplex virus in B cell-suppressed mice: The relative roles of cell-mediated and humoral immunity, J. Gen. Virol. 61: 127–131.PubMedGoogle Scholar
  96. 96.
    Simmons, A., and Nash, A. A., 1987, Effect of B cell suppression on primary and reinfection of mice with herpes simplex virus, J. Infect. Dis. 155: 649–654.PubMedGoogle Scholar
  97. 97.
    Kapoor, A. K., Nash, A. A., Wildy, P., Phelan, J., McClean, C. S., and Field, H. J., 1982, Pathogenesis of herpes simplex virus in congenitally athymic mice: The relative roles of cell mediated and humoral immunity, J. Gen. Virol. 60: 225–233.PubMedGoogle Scholar
  98. 98.
    Simmons, A., and Nash, A. A., 1985, Role of antibody in primary and recurrent herpes simplex infection, J. Virol. 53: 944–948.PubMedGoogle Scholar
  99. 99.
    Dix, R. D., Pereira, L., and Baringer, J. R., 1981, Use of monoclonal antibody directed against herpes simplex virus glycoproteins to protect mice against acute virus-induced neurological disease, Infect. Immun. 34: 192–199.PubMedGoogle Scholar
  100. 100.
    Kino, Y., Eto, T., Ohtomo, Y., Yamamato, M., and Mori, R., 1985, Passive immunization of mice with monoclonal antibodies to glycoprotein gB of herpes simplex virus, Microbiol. Immunol. 29: 143–149.PubMedGoogle Scholar
  101. 101.
    Balachandran, N., Bacchetti, S., and Rawls, W. E., 1982, Protection against lethal challenge of BALB/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2, Infect. Immun. 37: 1132–1137.PubMedGoogle Scholar
  102. 102.
    Rector, J. T., Lausch, R. N., and Oakes, J. E., 1984, Identification of infected cell-specific monoclonal antibodies and their role in host resistance to ocular herpes simplex virus type 1 infection, J. Gen. Virol. 65: 657–661.PubMedGoogle Scholar
  103. 103.
    Vandrik, B., Vandal, E, and Norrby, E., 1982, Herpes simplex virus encephalitis: Intrathecal synthesis of oligoclonal virus specific IgG, IgA and IgM antibodies, J. Neurol. 228: 25–38.Google Scholar
  104. 104.
    Erlich, K. S., and Mills, J., 1986, Passive immunotherapy for encephalitis caused by herpes simplex virus, Rev. Infect. Dis. 8 (Suppl. 4): 439–445.Google Scholar
  105. 105.
    Metcalf, J. E, and Kaufman, H. E., 1976, Herpetic stromal keratitis: Evidence for cell mediated immunopathogenesis, Am. J Ophthalmol. 82: 827–832.PubMedGoogle Scholar
  106. 106.
    Chan, W. L., Javanovic, T., and Lukig, M. L., 1989, Infiltration of immune T cells in the brain of mice with herpes simplex virus-induced encephalitis, J. Neuroimmunol. 23: 195–201.PubMedGoogle Scholar
  107. 107.
    Kristensson, K., Svennerholm, B., Persson, L., Vahlne, A., and Lycke, E., 1979, Latent herpes simplex virus trigeminal ganglionic infection in mice and demyelination in the central nervous system, J. Neurol. Sci. 43: 253–264.PubMedGoogle Scholar
  108. 108.
    Townsend, J. J., 1981, The demyelinating effect of corneal HSV infections in normal and nude (athymic) mice, J. Neurol. Sci. 50: 435–441.PubMedGoogle Scholar
  109. 109.
    Altmann, D. M., and Blyth, W. A., 1984, Lipopolysaccharide-induced suppressor cells for delayed type hypersensitivity to herpes simplex virus: Nature of suppressor cell and effect on pathogenesis of herpes simplex, Immunology 53: 473–480.PubMedGoogle Scholar
  110. 110.
    O’Brien, J. J., and Campoli-Richards, D. M., 1989, Acyclovir. An updated review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy, Drugs 37: 233–309.PubMedGoogle Scholar
  111. 111.
    Collins, P., 1983, The spectrum of antiviral activities of acyclovir in vitro and in vivo, J. Antimicrob. Chemother. 12 (Suppl. B): 19–27.PubMedGoogle Scholar
  112. 112.
    Dorsky, D. I., and Crumpacker, C. S., 1987, Drugs five years later: Acyclovir, Ann. Intern. Med. 107: 859–874.PubMedGoogle Scholar
  113. 113.
    Field, H. J., Bell, S. E., Elion, G. B., Nash, A. A., and Wildy, P., 1979, Effect of acycloguanosine treatment on acute and latent herpes simplex infections in mice, Antimicrob. Agents Chemother. 15: 554–561.PubMedGoogle Scholar
  114. 114.
    Wildy, P., 1984, Prospects for vaccines against herpes simplex types 1 and 2, in: New Approaches to Vaccine Development ( R. Bell and G. Torrigiani, eds.), Schwabe and Co., Basel, pp. 300–312.Google Scholar
  115. 115.
    Johnson, R. E., Nahmias, A. J., Magder, L. S., Lee, E. K., Brooks, C. A., and Snowden, C. B., 1989, A seroepidemiologic survey of the prevalence of herpes simplex virus type 2 infection in the United States, N. Engl. J. Med. 321: 7–12.PubMedGoogle Scholar
  116. 116.
    Meignier, B., 1985, Vaccination against herpes simplex virus infections, in: The Herpes Viruses, Volume 4 ( B. Roizman and C. Lopez, eds.), Plenum Press, New York, pp. 265–296.Google Scholar
  117. 117.
    Roizman, B., Warren, J., Thuning, C. A., Fanshaw, M. S., Norrild, B., and Meignier, B., 1982, Application of molecular genetics to the design of live herpes simplex virus vaccines, Den Biol. Stand. 53: 287–304.Google Scholar
  118. 118.
    Ashley, R., Mertz, G. J., and Corey, L., 1987, Detection of asymptomatic herpes simplex virus infections after vaccination, J Virol. 61: 264–268.PubMedGoogle Scholar
  119. 119.
    Skinner, G. R. B., Woodman, G., Hartley, C., Buchan, A., Fuller, A., Wiblin, C., Wilkins, G., and Melling, J., 1982, Early experience with “antigenoid” vaccine AcNFUI(S’)MRC towards prevention or modification of herpes genitalis, Dev. Biol. Stand. 52: 333–344.PubMedGoogle Scholar
  120. 120.
    Dix, R. D., 1987, Prospects for a vaccine against herpes simplex virus types 1 and 2, Prog. Med. Virol. 34: 89–128.PubMedGoogle Scholar
  121. 121.
    Blacklaws, B. A., and Nash, A. A., 1990, Immunological memory to herpes simplex virus type 1 glycoproteins B and D in mice, J Gen. Virol. 71: 863–871.PubMedGoogle Scholar
  122. 122.
    Appelbaum, E., Kreps, S. I., and Sunshine, A., 1962, Herpes zoster encephalitis, Am. J. Med. 32: 25–31.PubMedGoogle Scholar
  123. 123.
    Gold, E., and Nankervis, G. A., 1973, Varicella-zoster viruses, in: The Herpesviruses ( A. S. Kaplan, ed.), Academic Press, New York, pp. 327–351.Google Scholar
  124. 124.
    Esiri, M. M., and Tomlinson, A. H., 1972, Herpes zoster: Demonstration of virus in trigeminal nerve and ganglion by immunofluorescence and electron microscopy, J Neurol. Sci. 15: 35–48.PubMedGoogle Scholar
  125. 125.
    Linneman, C. C., and Alvira, M. M., 1980, Pathogenesis of varicella-zoster angiitis in the CNS, Arch. Neurol. 37: 239–240.Google Scholar
  126. 126.
    Straus, S. E., 1988, The chronic mononucleosis syndrome, J. Infect. Dis. 157: 405–412.PubMedGoogle Scholar
  127. 127.
    Behar, R., Wiley, C., and McCutchan, J. A., 1987, Cytomegalovirus polyradiculoneuropathy in acquired immune deficiency syndrome, Neurology 37: 557–561.PubMedGoogle Scholar
  128. 128.
    Richert, J. R., Potolicchio, S., Garagusu, V. F., Manz, H. J., and Cohan, S. L., 1987, Cytomegalovirus encephalitis associated with episodic neurologic deficits and OKT-8 positive pleocytosis, Neurology 37: 149–152.PubMedGoogle Scholar
  129. 129.
    Wiley, C. A., Schrier, R. D., Denaro, E. J., Nelson, J. A., Lampert, P. W., and Oldstone, M. B. A., 1986, Localization of cytomegalovirus proteins and genome during fulminant central nervous system infection in an acquired immune deficiency syndrome patient, J. Neuropathol. Exp. Neurol. 45: 127–139.PubMedGoogle Scholar
  130. 130.
    Cordonnier, C., Feuilhade, E, Vernant, J. P., Marsault, C., Rochant, H., and Rodet, H., 1983, Cytomegalovirus encephalitis occurring after bone marrow transplantation, Scand. J. Haematol. 31: 248–252.PubMedGoogle Scholar
  131. 131.
    Bishopric, G., Bruner, J., and Butler, J., 1985, Guillain-Barré syndrome with cytomegalovirus infection of peripheral nerves, Arch. Pathol. Lab. Med. 109: 1106–1108.PubMedGoogle Scholar
  132. 132.
    Ludwig, H., Pauli, G., Gelderblom, H., Darai, G., Koch, H.-G., Flugel, R. M., Norrild, B., and Daniel, M. D., 1983, B virus (Herpesvirus simiae), in: The Herpesviruses, Volume 2 ( B. Roizman, ed.), Plenum Press, New York, pp. 385–428.Google Scholar
  133. 133.
    Barahona, H., Melendez, L. V., and Melnick, J. L., 1974, A compendium of herpesviruses isolated from non-human primates, Intervirology 3: 175–192.PubMedGoogle Scholar
  134. 134.
    McCarthy, K., and Tosolini, F. A., 1975, Hazards from simian herpes viruses: Reactivation of skin lesions with shedding, Lancet 1: 649–650.PubMedGoogle Scholar
  135. 135.
    Ludwig, H., 1982, Bovine herpesviruses, in: The Herpesviruses, Volume 2 ( B. Roizman, ed.), Plenum Press, New York, pp. 135–214.Google Scholar
  136. 136.
    Pursell, A. R., Sangster, L. T., Byars, T. D., Divers, T. J., and Cole, J. R., Jr., 1979, Neurologic disease induced by equine herpesvirus 1, J. Am. Vet. Med. Assoc. 175: 473–474.PubMedGoogle Scholar
  137. 137.
    Jackson, T. A., Osburn, B. I., Cordy, D. R., and Kendrick, J. W, 1977, Equine herpes 1 infection of horses: Studies on the experimentally induced neurologic disease, Am. J Vet. Res. 38: 709–719.PubMedGoogle Scholar
  138. 138.
    Sabo, A., and Rajcani, J., 1976, Latent pseudorabies virus infection in pigs, Acta. Virol. (Praha) 20: 208–214.Google Scholar
  139. 139.
    McCracken, R. M., McFerran, J. B., and Dow, C., 1973, The neural spread of pseudorabies virus in calves, J. Gen. Virol. 20: 17–28.PubMedGoogle Scholar
  140. 140.
    McKercher, D. G., 1973, Viruses of other vertebrates, in: The Herpesviruses ( A. S. Kaplan, ed.), Academic Press, New York, pp. 427–493.Google Scholar
  141. 141.
    Gaskell, R. M., and Povey, R. C., 1979, Feline rhinotracheitis: Sites of virus replication and persistence in acutely and persistently infected cats, Res. Vet. Sci. 27: 107–174.Google Scholar
  142. 142.
    Payne, L. N., 1982, Biology of Marek’s disease virus and the herpes virus of turkeys, in: The Herpesviruses, Volume 1 ( B. Roizman, ed.), Plenum Press, New York, pp. 347–431.Google Scholar
  143. 143.
    Chumnonqsitathum, B. J., Plumb, J. A., and Hilge, V., 1988, Histopathology, electron microscopy and isolation of channel catfish virus in experimentally infected European catfish, Silurus glanis L, J. Fish Dis. 11: 351–358.Google Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • Anthony A. Nash
    • 1
  • J. Matthias Löhr
    • 2
  1. 1.Department of PathologyUniversity of CambridgeCambridgeEngland
  2. 2.Department of Internal MedicineUniversity of ErlangenErlangenGermany

Personalised recommendations