Genetic Polymorphism of Drug Metabolism in Humans

  • A. S. Gross
  • H. K. Kroemer
  • M. Eichelbaum
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 283)


Drug metabolizing enzymes are of paramount importance in drug detoxification as well as chemical mutagenesis, carcinogenesis and toxicity mediated via metabolic activation. Thus genetically determined differences in the activity of these enzymes can influence individual susceptibility to adverse drug reactions, drug induced diseases and certain types of chemically induced cancers. The genetic polymorphisms of three human drug metabolising enzymes, namely N-acetyltransferase and two cytochrome P450 isozymes (P-450IID6: debrisoquine / sparteine polymorphism, P-450IIC10: mephenytoin polymorphism) have been firmly established. Based on the metabolic handling of certain probe drugs the population can be divided into two phenotypes: the rapid acetylator / extensive metabolizer and slow acetylator / poor metabolizer. These polymorphisms have provided useful tools for the study of the relationship between genetically determined differences in the activity of drug metabolizing enzymes and the risk of adverse drug reactions and certain types of chemically induced diseases and cancers.


Poor Metabolizers Metabolic Ratio Slow Acetylators Acetylator Phenotype Rapid Acetylators 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Dabbagh, S.A., Idle, J.R. and Smith, R.L. (1981). Animal modelling of human polymorphic drug oxidation -the metabolism of debrisoquine and phenacetin in rat inbred strains. J. Pharm. Pharmacol. 33: 161–164.CrossRefPubMedGoogle Scholar
  2. Anders, H.H. and Weber W.W. (1986). N-Acetylation pharmacogenetics: Michaelis Menten constants for arylamine drugs as predictors of their N-acetylation rates in vivo. Drug Metab. Dispos. 14: 382–385.Google Scholar
  3. Barbeau, A., Cloutier, T., Roy M., Plasse, L., Paris, S. and Poirier, J. (1985). Ecogenetics of Parkinson’s disease: 4-hydroxylation of debrisoquine. Lancet ii: 1213–1215.Google Scholar
  4. Barbeau, A., Roy, M., Cloutier, T., Plasse, L. and Paris, S. (1986). Environmental and genetic factors in the etiology of Parkinson’s disease. Adv. Neurol. 45: 299–306.Google Scholar
  5. Biehl, J.P. (1957). Emergence of drug resistance as related to the dosage and metabolism of isoniazid. Trans 16th Conf Chemother Tuberc Washington D.C. US Veterans Adm. Army Navy, 108–113.Google Scholar
  6. Bönicke, R. and Reif, W. (1953). Enzymatische Inaktivierung von Isonicotinsäurehydrazid im menschlichen und tierischen Organismus. Arch. Exp. Pathol. Pharmakol. 220: 321–333.Google Scholar
  7. Brosen, K. and Gram, L.F. (1989). Clinical significance of the sparteine/debrisoquine oxidation polymorphism. Eur. J. Clin. Pharmacol. 36: 537–547.CrossRefPubMedGoogle Scholar
  8. Caporaso, N., Hayes, R.B., Dosemeci, M., Hoover, R., Ayesh, R., Hetzel, M. Nadidle, J. (1989). Lung cancer risk, occupational exposure, and the debrisoquine metabolic phenotype. Can. Res. 49: 3675–3679.Google Scholar
  9. Chen, Z.R., Somogyi, A.A. and Bochner, F. (1988). Polymorphic 0-demethylation of codeine. Lancet ii: 914–915.Google Scholar
  10. Cooper, R.G., Evans, D.A.P. and Whibley, E.J. (1984). Polymorphic hydroxylation of perhexiline maleate in man. J. Med. Genet. 21: 27–33.CrossRefPubMedGoogle Scholar
  11. Dayer, P., Desmeules, J., Leemann, T. and Striberni, R. (1988). Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4-hydroxylation (cytochrome P-450 dbl./bun). Biochem. Biophys. Res. Commun. 152: 411–416.CrossRefPubMedGoogle Scholar
  12. Desmeules, J., Dayer, P., Gascon, M.-P. and Magistris, M. (1989). Impact of genetic and environmental factors on codeine analgesia. Clin. Pharmacol. Ther. 45: 122.Google Scholar
  13. Devadatta, S., Gangadharan, P.R.J., Andrews, R.H., Fox, W., Ramakrishnan, C.V., Selhon, J.B. and Veru, S. (1960). Peripheral neuritis due to isoniazid. Bull World Health Org. 23: 587–598.PubMedGoogle Scholar
  14. Drayer, D.E. and Reidenberg, D.M. (1977). Clinical consequences of polymorphic acetylation of basic drugs. Clin. Pharmacol. Ther. 22: 251–258.PubMedGoogle Scholar
  15. Eichelbaum, M. (1975). Ein neuentdeckter Defekt im Arzneimittelstoffwechsel des Menschen: Die fehlende N-Oxidation des Spartein. Habilitationsschrift. Medizinische Fakultät Rheinischen Friedrich-Wilhelms-Universität Bonn.Google Scholar
  16. Eichelbaum, M. and Gross, A.S. (1990). The genetic polymorphism of debrisoquine/sparteine - clinical aspects. Pharmacol. Ther. In press.Google Scholar
  17. Eichelbaum, M., Spannbrucker, N., Steincke, B. and Dengler, H.J. (1979). Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur. J. Clin. Pharmacol. 16: 183–187.CrossRefPubMedGoogle Scholar
  18. Eichelbaum, M., Bertilsson, L., Uwe, J. and Zekorn, C. (1982a). Polymorphic oxidation of sparteine and debrisoquine: Related pharmacogenetic entities. Clin. Pharmacol. Ther. 31: 184–186.Google Scholar
  19. Eichelbaum, M., Musch, E., Castro-Parra, M. and v. Sassen, W. (1982b). Isoniazid hepatotoxicity in relation to acetylator phenotype and isoniazid metabolism. Br J. Clin. Pharmacol. 14: 575P - 576 P.Google Scholar
  20. Eichelbaum, M., Baur, M.P., Dengler, H.J., Osikowska-Evers, B.O., Tieves, G., Zekorn, C. and Rittner, C. (1987). Chromosomal assignment of human cytochrome P-450 (debrisoquine/sparteine type) to chromosome 22. Br J. Clin. Pharmacol. 23: 455–458.PubMedGoogle Scholar
  21. Fonne-Pfister, R., Bargetzi, M.J. and Meyer, U.A. (1987). MPTP, the neurotoxin inducing Parkinson’s disease, is a potent competitive inhibitor of human and rat cytochrome P450 isozymes (P450bufl, P450dbl) catalyzing debrisoquine 4- hydroxylation. Biochem. Biophys. Res. Comm. 148: 1144–1150.CrossRefPubMedGoogle Scholar
  22. Fonne-Pfister, R. and Meyer, U.A. (1988). Xenobiotic and endobiotic inhibitors of cytochrome P-450dbl function, the target of the debrisoquine/sparteine type polymorphism. Biochem. Pharmacol. 37: 3829–3835.CrossRefPubMedGoogle Scholar
  23. Ged, C., Umbenauer, D.R., Bellew, T.M., Bork, R.W., Srivastava, P.K., Shinriki, N., Lloyd,R.S. and Guengerich, F.P. (1988). Characterization of cDNAs, mRNAs and proteins related to human liver microsomal cytochrome P-450 S-mephenytoin 4-hydroxylase. Biochemistry 27: 6929–6940.Google Scholar
  24. Gonzalez, F.J. (1989). The molecular biology of cytochrome P-450s. PharmacoL Rev. 40: 243–288.Google Scholar
  25. Gonzalez, F.J., Vilbois, F., Hardwick, J.P., McBride, O.W., Nebert, D.W., Gelboin, H.V. and Meyer, U.A. (1988a). Human debrisoquine 4-hydroxylase (P450IID1): cDNA and deduced amino acid sequence and assignment of the CYP2D locus to chromosome 22. Genomics 2: 174–179.Google Scholar
  26. Gonzalez, F.J., Skoda, R.C., Kimura, S., Umeno, M., Zanger, U.M., Nebert, D.W., Gelboin, H.V., Hardwick, J.P. and Meyer, U.A. (1988b). Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature (Lond) 331: 442–446.CrossRefGoogle Scholar
  27. Grant, D.M., Tang, B.K. and Kalow, W. (1984). Polymorphic N-acetylation of a caffeine metabolite. Clin. Pharmacol. Ther. 33: 355–359.CrossRefGoogle Scholar
  28. Grant, D.M., Lottspeich, F. and Meyer, U.A. (1989a). Evidence for two closely related isozymes of arylamine N-acetyltransferase in human liver. FEBS Letters 244: 203–207.CrossRefPubMedGoogle Scholar
  29. Grant, D.M., Eichelbaum, M. and Meyer, U.A. (1989b). Genetic polymorphism of Nacetyltransferase: enzyme activity and content in liver biopsies correlates with acetylator phenotype determined with caffeine. Eur. J. Clin. Pharmacol. 36: 199.CrossRefGoogle Scholar
  30. Grant, D.M., Blum, M., Demierre, A. and Meyer, U.A. (1989c). Nucleotide sequence for an intronless gene for a human arylamine N-acetyltransferases related to polymorphic drug acetylation. Nucleic Acids Res. 17: 3978.Google Scholar
  31. Gut, J., Meyer, U.T., Catin, T. and Meyer, U.A. (1986). Mephenytoin type polymorphism in drug oxidation: purification and characterization of a human liver cytochrome P-450 isozyme catalyzing microsomal mephenytoin hydroxylation. Biochem. Biophys. Acta. 884: 435–447.CrossRefPubMedGoogle Scholar
  32. Hall, S.D., Guengerich, F.P., Branch, R.A. and Wilkinson, G.A. (1987). Characterization and inhibition of mephenytoin 4-hydroxylase activity in human liver microsomes. J. Pharmacol. Exp. Ther. 240: 216–222.Google Scholar
  33. Horai, Y., Fujita, K. and Ishizaki, T. (1989). Genetically determined N-acetylation and oxidation capacities in Japanese patients with non occupational urinary bladder cancer. Eur. J. Clin. Pharmacol. 37: 581–587.PubMedGoogle Scholar
  34. Hughes, H.B., Schmidt, L.H. and Biehl, J.P. (1955). The metabolism of isoniazid, its implications in therapeutic use. Trans. 14th Conf. Chemother. Tuberc. Washington D.C., U.S. Veterans Adm Army Navy, 217–222.Google Scholar
  35. Inaba, T., Jurima, M. and Kalow, W. (1986). Family studies of mephenytoin hydroxylation deficiency. Am. J. Hum. Genet. 38: 768–772.PubMedGoogle Scholar
  36. Inaba, T., Jorge, L.F. and Arias, T.D. (1988). Mephenytoin hydroxylation in the Cuna Indians of Panama. Brit. J. Clin. Pharmacol. 25: 75–79.Google Scholar
  37. Iselius, L. and Price Evans, D.A.P. (1983). Formal genetics of isoniazid metabolism in man. Clin. Pharmacokin. 8: 541–544.CrossRefGoogle Scholar
  38. Jenne, J.W. (1965). Partial purification and properties of the isoniazid transacetylase in human liver: Its relationship to the acetylation of p-amino-salicylic acid. J. Clin. Invest. 44: 1992–2002.CrossRefGoogle Scholar
  39. Kaisary, A., Smith, P., Jaczq, E., McAllister, B., Wilkinson,G.R., Ray, W.A. and Branch, R.A. (1987). Genetic predisposition to bladder cancer: ability to hydroxylate debrisoquine and mephenytoin as risk factors. Can. Res. 47: 5488–5493.Google Scholar
  40. Knodell, R.G., Dubey, R.K., Wilkinson, G.R. and Guengerich, F.P. (1988). Oxidative metabolism in human liver: relationship to polymorphic S-mephenytoin 4-hydroxylation. J. Pharamcol. Exp. Ther. 245: 845–849.Google Scholar
  41. Kroemer, H.K., Mikus, G., Kronbach, T., Meyer, U.A. and Eichelbaum, M. (1989). In vitro characterization of the human cytochrome P-450 involved in polymorphic oxidation of propafenone. Clin. Pharmacol. Ther. 45: 28–33.Google Scholar
  42. Kupfer, A. and Preisig, R. (1984). Pharmacogenetics of mephenytoin: A new drug hydroxylation polymorphism in man. Eur. J. Clin. Pharmacol. 26: 753–759.CrossRefPubMedGoogle Scholar
  43. Kupfer, A. and Branch, R.A. (1985). Stereoselective mephobarbital hydroxylation cosegregates with mephenytoin hydroxylation. Clin. Pharmacol. Ther. 38: 414–418.CrossRefPubMedGoogle Scholar
  44. Kupfer, A., Desmond, P.V., Schenker, S. and Branch, R.A. (1984). Mephenytoin hydroxylation deficiency: kinetics after repeated doses. Clin Pharmacol Ther 35: 33–39.Google Scholar
  45. Mahgoub, A., Idle, J.R., Dring, L.G., Lancaster, R. and Smith, R.L. (1977). Polymorphic hydroxylation of debrisoquine in man. Lancet ii, 584–586.Google Scholar
  46. McQueen, E.G. (1980). Pharmacological bases of adverse drug reactions. In Drug Treatment, ed Avery G.S., 2nd edn, pp 202–235 Auckland: Adis Press.Google Scholar
  47. Meehan, R.R., Gosden, J.R., Rout, D., Hastie, N.D., Friedberg, T., Adesnik, M., Buckland, R., van Heyningen, V., Fletcher, J., Spurr, N.K., Sweeney, J. and Wolf, C.R. (1988). Human cytochrome P450 PB- 1: a multigene family involved in mephenytoin and steroid oxidation that maps to chromosome 10. Am. J. Hum. Genet. 42: 26–37.PubMedGoogle Scholar
  48. Meier, U.T., Dayer, P., Male, P.J., Kronbach, T. and Meyer, U.A. (1985). Mephenytoin hydroxylation polymorphism: characterization of the enzymatic deficiency in liver microsomes of poor metabolizers phenotyped in vivo. Clin. Pharmacol. Ther. 38: 488–494.CrossRefPubMedGoogle Scholar
  49. Meier, U.T. and Meyer, U.A. (1987). Genetic polymorphism of human cytochrome P-450 (S) mephenytoin 4-hydroxylase. Studies with human autoantibodies suggest a functionally altered P-450 isozyme as cause of genetic deficiency. Biochemistry 26: 8466–8474.CrossRefPubMedGoogle Scholar
  50. Meyer, U.A., Skoda, R.C. & Zanger, U.M. (1990). The genetic polymorphism of debrisoquine/sparteine metabolism - molecular mechanisms. Pharmacol Ther,In press.Google Scholar
  51. Mitchell, R.S. & Bell, J.C. (1957). Clinical implications of isoniazide PAS and streptomycin blood levels in pulmonary tuberculosis. Trans Am Clin Clim Ass 69: 98–105.Google Scholar
  52. Mitchell, J.R., Thorgeirsson, U.P., Black, M., Timbrell, J.A., Snodgrass, W.R., Potter, W.Z., Jollow, D.J. & Keiser, H.R. (1975). Increased incidence of isoniazid hepatitis in rapid acetylators: Possible relation to hydrazine metabolites. Clin Pharmacol Ther 18: 70–79.PubMedGoogle Scholar
  53. Musch, E., Eichelbaum, M., Wang, J.K.V., Sassen, W., Castro-Parra, M. ac Dengler, H.J. (1982). Die Häufigkeit hepatotoxischer Nebenwirkungen der tuberkulostatischen Kombinationstherapie (INH, RMP, EMB) in Abhängigkeit vom Acetyliererphänotyp. Klin Wochenschr 60: 513–519.Google Scholar
  54. Nakamura, K., Goto, F., Ray W.A., McAllister, C.B., Jacqz, E. Wilkinson, G.R. & Branch, R.A. (1985). Interethnic differences in genetic polymorphism of debrisoquin and mephenytoin hydroxylation between Japanese and Caucasian populations. Clin Pharmacol Ther 38: 402–408.Google Scholar
  55. Newton, B.W., Benson, R.C. & McCarriston, C.C. (1966). Sparteine sulphate: A potent capricious oxytocic. Am J Obstet Gynecol 94: 234–241.PubMedGoogle Scholar
  56. Platzer, R., Kiipfer, A., Bircher, J. & Preisig, R. (1978). Polymorphic acetylation and aminopyrine demethylation in Gilbert’s syndrome. Eur J Clin Invest 8: 219–223.CrossRefPubMedGoogle Scholar
  57. Price Evans, D.A. (1989). N-Acetyltransferase. Pharmacol Ther 42: 157–234.CrossRefGoogle Scholar
  58. Price Evans, D.A. & White, T.A. (1964). Human acetylation polymorphism. J Lab Clin Med 63: 394–403.Google Scholar
  59. Price Evans, D.A., Manley, K.A. & Mc Kusick, V.A. (1960). Genetic control of isoniazid metabolism in man. Br Med J 2: 485–461.CrossRefGoogle Scholar
  60. Price Evans,D.A., Mahgoub, A., Sloan, T.P., Idle, J.R. & Smith, R.L. (1980). A family and population study of the genetic polymorphism of debrisoquine oxidation in a white British population. J Med Genet 17: 102–105.Google Scholar
  61. Price Evans, D.A., Eze, L.C. & Whibley, E.J. (1983). The association of the slow acetylator phenotype with bladder cancer. J Med Gen 20: 321–329.CrossRefGoogle Scholar
  62. Price Evans, D.A., Paterson, S., Francisco, P. & Alvarez, G. (1985). The acetylator phenotypes of Saudi Arabian diabetics. J Med Genet 22: 479–483.CrossRefGoogle Scholar
  63. Raghuram, T.C., Koshakji, R.P., Wilkinson, G.R. & Wood, A.J.J. (1984). Polymorphic ability to metabolize propranolol alters 4-hydroxypropranolol levels but not beta blockade. Clin Pharmacol Ther 36: 51–56.CrossRefPubMedGoogle Scholar
  64. Rao, K.V.N., Mitchison, D.A., Nair, N.G.K., Prema, K. & Tripathy, S.P. (1970). Sulfadimidine acetylation test for classification of patients as slow or rapid inactivators of isoniazide. Br Med J 3: 495–497.CrossRefPubMedGoogle Scholar
  65. Robitzek, E.H., Selikoff, I.J. & Ornstein, G.G. (1952). Chemotherapy of human tuberculosis with hydrazine derivatives of isonicotinic acid. Q Bull Sea View Hosp N.Y. 13: 27–51.Google Scholar
  66. Sanz, E.J., Villen, T., Alm, C. & Bertilsson, L. (1989). S-mephenytoin hydroxylation phenotypes in a Swedish population determined after coadministration with debrisoquine. Clin Pharmacol Ther 45: 495–499.CrossRefPubMedGoogle Scholar
  67. Shah, R.R., Oates, N., Idle, J.R., Smith, R.L. & Lockhart, J.D. (1982). Impaired oxidation of debrisoquine in patients with perhexiline neuropathy. Br Med J 284: 295–299.CrossRefGoogle Scholar
  68. Shimada, T., Misono, K.S. & Guengerich, F.P. (1986). Human liver microsomal cytochrome P-450 mephenytoin 4-hydroxylase, a prototype of genetic polymorphism in oxidative drug metabolism: purification and characterization of two similar forms involved in the reaction. J Biol Chem 261: 909–921.PubMedGoogle Scholar
  69. Siddoway, L.A., Thompson, K.A., McAllister, C.B., Wang, T., Wilkinson, G.R., Roden, D.M. & Woosley, R.L. (1987). Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences. Circulation 75: 785–791.CrossRefPubMedGoogle Scholar
  70. Skoda, R., Gonzalez, F.J., Demierre, A. & Meyer, U.A. (1988). Two mutant alleles of the human cytochrome P 450 dbl gene (P 450 IID1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc Natl Acad Sci 85: 5240–5243.Google Scholar
  71. Sommers, De K., Moncrieff, J. & Avenant, J. (1988). Polymorphism of the 4-hydroxylation of debrisoquine in the San Bushmen of Southern Africa. Human Toxicol 7: 273–276.CrossRefGoogle Scholar
  72. Umbenauer, D.R., Martin, M.V., Lloyd, R.S. & Guengerich, F.P. (1987). Cloning and sequence determination of a complementary DNA related to human liver microsomal cytochrome P-450S- mephenytoin 4-hydroxylase. Biochemistry 26: 1094–1099.CrossRefGoogle Scholar
  73. Ward, S.A., Walle, T., Walle, U.K., Wilkinson, G.R. & Branch, R.A. (1989). Propranolol’s metabolism is determined by both mephenytoin and debrisoquin hydroxylase activities. Clin Pharmacol Ther 45: 72–79.CrossRefPubMedGoogle Scholar
  74. Wedlund, P.J., Aslanian, W.S., McAllister, C.B., Wilkinson, G.R. & Branch, R.A. (1984). Mephenytoin hydroxylation deficiency in Caucasians: frequency of a new oxidative drug metabolism polymorphism. Clin Pharmacol Ther 36: 773–780.Google Scholar
  75. Wedlund, P.J., Aslanian, W.S., Jacgz, E., McAllister, C.B., Branch, R.A. & Wilkinson, G.R. (1985). Phenotypic differences in mephenytoin pharmacokinetics in normal subjects. J Pharmacol Exp Ther 234: 662–669.PubMedGoogle Scholar
  76. Wilkinson, G.R., Guengerich, F.P. & Branch, R.A. (1989). Genetic polymorphism of Smephenytoin hydroxylation. Pharmacol Ther 43: 53–76.CrossRefPubMedGoogle Scholar
  77. Woosley, R.L., Drayer, D.E., Reidenberg, M.M., Nies, A.S., Carr, K. & Oates, J.A. (1978). Effect of acetylator phenotype on the rate at which procainamide induces antinuclear antibodies and the lupus syndrome. New Eng1 J Med 298: 1157–1159.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • A. S. Gross
    • 1
  • H. K. Kroemer
    • 1
  • M. Eichelbaum
    • 1
  1. 1.Dr. Margarete Fischer-Bosch-Institut für Klinische PharmakologieStuttgart 50Federal Republic of Germany

Personalised recommendations