Biological Significance of Active Oxygen Species: In Vitro Studies on Singlet Oxygen-Induced DNA Damage and on the Singlet Oxygen Quenching Ability of Carotenoids, Tocopherols and Thiols

  • Paolo Di Mascio
  • Stephan P. Kaiser
  • Thomas P. A. Devasagayam
  • Helmut Sies
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 283)

Abstract

Reactive oxygen species have been in focus for some time now, and there are several reviews on this topic. since our contribution to Biological Reactive Intermediates III (Wefers and Sies, 1986), work from our laboratory has been presented comprehensively (Sies, 1986, 1988; Ishikawa and Sies, 1989). Further, the biochemistry of oxygen toxicity has been presented (Cadenas, 1989).

Keywords

Chlorophyll Glutathione Retina Methionine Bilirubin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, B.N. (1983). Dietary carcinogens and anticarcinogens. Science 221, 1256–1264.Google Scholar
  2. Aubry, J.M. (1985). Search for singlet oxygen in the decomposition of hydrogen peroxide by mineral compounds in aqueous solutions. J. Am. Chem. Soc. 103 7218–7224.Google Scholar
  3. Burton, G.W. and IngoId, K.U. (1984). D-Carotene: An unusual type of lipid antioxidant. Science 224, 569–573.CrossRefPubMedGoogle Scholar
  4. Cadenas, E. (1989). Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58, 79–110.CrossRefPubMedGoogle Scholar
  5. Cadet, J., Decarroz, C., Wang, S.Y. and Midden, W.R. (1983). Mechanisms and products of photosensitised degradation of nucleic acids and related model compounds. Iss. J. Cehm. 23, 420–429.Google Scholar
  6. Cavina, G., Gallinella, B., Porra, R., Pecora, P. and Saraci, C. (1988). Carotenoids, retinoids and alpha-tocopherol in human serum–identification and determination by reversed-phase HPLC. J. Pharm. Biomed. Anal. 6, 259–269.CrossRefPubMedGoogle Scholar
  7. Cerutti, P.A. (1985). Prooxidant state and tumour promotion. Science 221, 1256–1264.Google Scholar
  8. Devasagayam, T.P.A., Di Mascio, P., Kaiser, S. and Sies, H. (1990). Activity of thiols as singlet molecular oxygen quenchers. J. Photochem. Photobiol. (submitted).Google Scholar
  9. Di Mascio, P. and Sies, H. (1989). Quantification of singlet oxygen generated by thermolysis of 3,3’-(1,4-naphthylidene) dipropionate. Monomol and dimol photoemission and the effects of 1,4-diazabicyclo (2.2.2) octane. J. Am. Chem. Soc. 111, 2909–2914.CrossRefGoogle Scholar
  10. Di Mascio, P., Wefers, H., Do-Thi, H-P., Lafleur, M.V.M. and Sies, H. (1989a). Singlet molecular oxygen causes loss of biological activity in plasmid and bacteriophage DNA and induces single-strand breaks. Biochim. Biophys. Acta 1007, 151–157.PubMedGoogle Scholar
  11. Di Mascio, P., Kaiser, S. and Sies, H. (1989b). Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274, 532–538.CrossRefGoogle Scholar
  12. Di Mascio, P., Mench, C.F.M., Nigro, R.G., Sarasin, A. and Sies, H. (1990). Singlet molecular oxygen induced mutagenicity in a mammalain SV40-based shuttle vector. Photochem. Photobiol.Google Scholar
  13. Epe, B., Miltzel, P. and Adam, W. (1988). DNA damage by oxygen radicals and excited state species: A comparative study using enzymatic probes in vitro. Chem. Biol. Interact. 67, 149–165.CrossRefGoogle Scholar
  14. Epe, B., Hegler, J. and Wild, D. (1989). Singlet oxygen as the ultimately reactive species in Salmonella typhimurium DNA damage induced by methylene blue/visible light. Carcinogenesis 10, 2019–2024.CrossRefPubMedGoogle Scholar
  15. Esterbauer, H., Striegl, G., Puhl, H. and Rotheneder, M. (1989). Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Rad. Res. Commun. 6, 67–75.CrossRefGoogle Scholar
  16. Foote, C.S. and Denny, r.W. (1968). Chemistry of singlet oxygen VIII. Quenching by 13- crotene. J. Am. Chem. Soc. 90, 6233–6235.CrossRefGoogle Scholar
  17. Gey, K.F., Brubacher, G.B. and Stähelin, H.B. (1987). Plasma levels of antioxidant vitamins in relation to ischemic heart disease and cancer. Am. J. Clin. Nutr. 45, 1368–1377.PubMedGoogle Scholar
  18. Handelman, G.J., Dratz, E.A., Reay, C.C. and van Kuijk, F.J.G.M. (1988). Carotenoids in the human macula and whole retina. Invest. Ophthamol. Vis. Sci. 29, 850–855.Google Scholar
  19. Ishikawa, T. and Sies, H. (1989). Glutathione as an antioxidant: Toxicological aspects. In Glutathione: Chemical, Biochemical and Medical Aspects, Part B. (D. Dolphin, R. Poulson and D. Avramovic, Eds. ) pp. 86–109.Google Scholar
  20. Kaiser, S., Di Mascio, P. and Sies, H. (1989). Lipoat and Singulettsauerstoff. In Thioctsdure (H.O. Borbe and H. Ulrich, Eds.) pp. 69–76, pmi Verlag GmbH, Frankfurt.Google Scholar
  21. Kaiser, S., Di Mascio, P., Murphy, M.E. and Sies, H. (1990). Physical and chemical scavenging of singlet oxygen by tocopherols. Arch. Biochem. Biophys. 276, XXX-XXX.Google Scholar
  22. Krinsky, N.I. (1990). antioxidant functions of carotenoids. Free Rad. Biol. Med. 7 XXX-XXX.Google Scholar
  23. Mathews-Roth, M.M. (1985). Carotenoids and cancer prevention-experimental and epidemiological studes. Pure Appl. Chem., 57, 717–722.CrossRefGoogle Scholar
  24. Meier, B., Radeke, H.H., Selle, S., Younes, M., Sies, H., Resch, K. and Habermehl, G.G. (1989). Human fibroblasts release reactive xoygen species in response to interleukin-1 or tumour necrosis factor-alpha. Biochem. J. 263, 539–545.PubMedGoogle Scholar
  25. Midden, W.R. and Wang, S.Y. (1983). Singlet oxygen generation for solution kinetics: clean and simple. J. Am. Chem. Soc. 105, 4129–4135.CrossRefGoogle Scholar
  26. Murphy, M.E. and Sies, H. (1990). Visible-range low-level chemiluminescence in biological systems. Meth. Enzymol. (in press).Google Scholar
  27. Packer, J.E., Mahood, J.S., Mora-Arellano, O., Slater, T.F., Wilson, R.L. and Wolfenden, B.S. (1981). Free radical and singlet oxygen scavengers. Reaction of a peroxy-radical with betacarotene, diphenyl furan and 1,4-diazabicyclo (2.2.2)- octane. Biochem. Biophys. Res. Commun. 98, 901–906.CrossRefPubMedGoogle Scholar
  28. Peto, R., Doll, R., Buckley, J.D. and Sporn, M.B. (1981). Can dietary beta-carotene materially reduce human cancer rates? Nature (London) 290, 201–208.CrossRefGoogle Scholar
  29. Pryor, W.A. (1986). Oxy-radicals and related species: Their formation, lifetimes, and ractions. Annu. Rev. Physiol. 48, 657–667.CrossRefPubMedGoogle Scholar
  30. Saito, I., Matsuura, T. and Inoue, K. (1983). Formation of superoxide ion via one-electron transfer from electron donors to singlet oxygen. J. Am. Chem. Soc. 105, 3200–3206.CrossRefGoogle Scholar
  31. Saito, I., Nagata, R., Nakagawa, H., Moriyama, H., Matsuura, T. and Inoue, K. (1987). New singlet oxygen source and trapping reagent for peroxide intermediates. Free Rad. Res. Commun. 2, 327–336.CrossRefGoogle Scholar
  32. Sies, H. (1986). Biochemistry of oxidative stress. Angew. Chem. (Int. Ed. Engl.) 25, 1058–1071.CrossRefGoogle Scholar
  33. Sies, H. (1988). Oxidative stress: Quinone redox cycling. ISI Atlas of Science: Biochemistry 1, 109–114.Google Scholar
  34. Thompson, J.N., Duval, S. and Verdier, P. (1985). Investigations of carotenoids in human blood using high performance liquid chromatography. J. Micronutr. Anal. 1, 81–91.Google Scholar
  35. Wefers, H. and Sies, H. (1986). Reactive oxygen species formed in vitro and in cells: role of thiols (GSH). Model studies with xanthine and xanthine oxidase and horseradish peroxidase. In Biological Reactive Intermediates III (J.J. Wefers, H. and Sies, H, Eds.) pp. 505–512, Plenum Publishing Corporation.Google Scholar
  36. Wefers, H., Schulte-Frohlinde, D. and Sies, H. (1987). Loss of transforming activity of plasmid DNA (pBR322). In E. coli caused by singlet molecular oxygen. FEBS Lett. 211, 49–52.Google Scholar
  37. Ziegler, R.G. (1989). A review of epidemiologic evidence that carotenoids reduce the risk of cancer. J. Nutr. 119, 116–122.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Paolo Di Mascio
    • 1
  • Stephan P. Kaiser
    • 1
  • Thomas P. A. Devasagayam
    • 1
  • Helmut Sies
    • 1
  1. 1.Institut für Physiologische Chemie IUniversity of DüsseldorfDüsseldorfWest Germany

Personalised recommendations