Bisfuranoid Mycotoxins: Their Genotoxicity and Carcinogenicity

  • Dennis P. H. Hsieh
  • David N. Atkinson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 283)


Bisfuranoid mycotoxins are a family of fungal metabolites that contain in their molecules a characteristic dihydrobisfuran ring structure. Some representative bisfuranoid mycotoxins are aflatoxins B1, Gl, M1, sterigmatocystin, O- methylsterigmatocystin, and versicolorin A (See Figure 1 & 2).


Primary Liver Cancer Aflatoxin Biosynthesis Liver Cancer Patient Apurinic Site Albumin Adduct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baertschi, S. W., Raney, K. D., Stone, M. P., and Harris, T. M. (1988). Preparation of the 8,9-epoxide of the mycotoxin aflatoxin Bp the ultimate carcinogenic species. J. Am. Chem. Soc. 110, 7929–7931.CrossRefGoogle Scholar
  2. Beasley, R. P., and Hwang, L. (1984). Epidemiology of hepatocellular carcinoma. In Viral Hepatitis and Liver Disease ( G. N. Vyas, J. L. Dienstag, and J. H. Hoffnagle, eds.), pp. 209–224. New York: Grune & Stratton.Google Scholar
  3. Bechtel, D. H. (1989). Molecular dosimetry of hepatic aflatoxin BI-DNA adducts: linear correlation with hepatic cancer risk. Regul. Toxicol. Pharmacol. 10, 7481.CrossRefGoogle Scholar
  4. Buss, P. and Lutz, W. K. (1988). Steady-state DNA adduct level in rat liver after chronic exposure to low doses of aflatoxin Bi and 2-acetylaminofluorine. Abstract. Proc. Amer. Assoc. Cancer Res. 29, 380.Google Scholar
  5. Cole, R. J., and Cox, R. H. (1981). Handbook of Toxic Fungal Metabolites. New York: Academic Press.Google Scholar
  6. Croy, R. G. and Wogan, G. N. (1981). Temporal patterns of covalent DNA adducts in rat liver after single and multiple doses of aflatoxin Bi. Cancer Res. 41, 197–203.PubMedGoogle Scholar
  7. Essigmann, J. M., Croy, R. G., Bennett, R. A., and Wogan, G. N. (1982). Metabolic activation of aflatoxin Bi: patterns of DNA adduct formation, removal, and excretions in relation to carcinogenesis. Drug Metab. Rev. 13, 581–602.Google Scholar
  8. Essigmann, J. M., Croy, R. G., Nadzan, A. M., Busby, W. F., Reinhold, V. N., Buchi, G., and Wogan, G. N. (1977). Structural identification of the major DNA adduct formed by aflatoxin Bi in vitro. Proc. Natl. Acad. Sci. USA 74, 1870–1874.CrossRefGoogle Scholar
  9. Foster, P. L., Eisenstadt, E., and Miller, J. H. (1983). Base substitution mutations induced by metabolically activated AFB1. Proc. Natl. Acad. USA 80, 2695–2698.CrossRefGoogle Scholar
  10. Gan, S., Skipper, P. L., Peng, X., Groopman, J. D., Chen, J., Wogan, G. N., and Tannenbaum, S. R. (1988). Serum albumin adducts in the molecular epidemiology of aflatoxin carcinogenesis: correlation with aflatoxin Bi intake and urinary excretion of aflatoxin Mi. Carcinogenesis 9, 1323–1325.CrossRefPubMedGoogle Scholar
  11. Garner, R. C., Dvorackova, I., and Tursi, F. (1988). Immunoassay procedures to detect exposure to aflatoxin Bi and benzo(a)pyrene in animals and man at the DNA level. Int. Arch. Occup. Environ. Health 60, 145–150.Google Scholar
  12. Hendricks J.D., Sinnhuber R.O., Wales J.H., Stack M.E., and Hsieh D.P.H. (1980). Hepatocarcinogenicity of sterigmatocystin and versicolorin A to rainbow trout (Salmo gairdneri) embryos. J. Natl. Cancer Inst. 64, 1503–1509.PubMedGoogle Scholar
  13. Hsieh, D. P. H., Wan, C. C., and Billington, J. A. (1989). A versiconal hemiacetal acetate converting enzyme in aflatoxin biosynthesis. Mycopathologia 107, 121–126.CrossRefPubMedGoogle Scholar
  14. Hsieh, D. P. H., Wong, Z. A., Wong, J. J., Michas, C., and Ruebner, B. H. (1977). Comparative metabolism of aflatoxin. In Mycotoxins in Human and Animal Health (J. V. Rodricks, C. W. Hesseltine, and M. A. Mehlman, Ed.). pp. 37–50. Park Forest South, IL: Pathotox Publishers.Google Scholar
  15. Hsieh, L., Hsu, S., Chen, D., and Santella, R. M. (1988). Immunological detection of aflatoxin Bi-DNA adducts formed in vivo. Cancer Res. 48, 6328–6331.Google Scholar
  16. IARC. (1987a). IARC monographs on the evaluation of carcinogenic risks to humans–overall evaluations of carcinogenicity: an updating of IARC Monographs volumes to 42. Suppl. 7, 56–75.Google Scholar
  17. IARC. (1987b). IARC monographs on the evaluation of carcinogenic risks to humans–overall evaluations of carcinogenicity: an updating of IARC Monographs volumes 1 to 42. Suppl. 7, 82–87.Google Scholar
  18. Irvin, T. R., and Wogan, G. N. (1984). Quantitation of aflatoxin Bi adduction within the ribosomal RNA gene sequences of rat liver DNA. Proc. Natl. Acad. Sci. USA 81, 664–668.CrossRefPubMedGoogle Scholar
  19. Lin, J., Miller, J. A., and Miller, E. C. (1977). 2, 3-Dihydro-2-(guan-7-yl)-3-hydroxyaflatoxin Bi, a major acid hydrolysis product of aflatoxin Bi-DNA or -ribosomal RNA adducts formed in hepatic microsome-mediated reactions and in rat liver in vivo. Cancer Res. 37 4430–4438.Google Scholar
  20. Loechler, E. L., Teeter, M. M., and Whitlow, M. D. (1988). Mapping the binding site of aflatoxin Bi in DNA: molecular modeling of the binding sites for the N(7)-guanine adduct of aflatoxin Bi in different DNA sequences. J. Biomol. Struct. Dyn. 5, 1237–1257.CrossRefPubMedGoogle Scholar
  21. Lutz, W. K. (1987). Quantitative evaluation of DNA-binding data in vivo for low-dose extrapolations. Arch. Toxicol. Suppl. 11, 66–74.PubMedGoogle Scholar
  22. Martin, C. N., and Garner, R. C. (1977). Aflatoxin B-oxide generated by chemical or enzymic oxidation of aflatoxin Bi causes guanine substitution in nucleic acids. Nature 267, 863–865.CrossRefPubMedGoogle Scholar
  23. Modali, R. and Yang, S. S. (1986). Specificity of aflatoxin Bi binding on human proto-oncogene nucleotide sequence. In Monitoring of Occupational Genotoxicants ( M. Sorsa and H. Norppa, ed.), pp. 147–158. Alan R. Liss.Google Scholar
  24. Niranjan, B. G., Bhat, N. K., and Avadhani, N. G. (1982). Preferential attack of mitochondrial DNA by aflatoxin Bi during hepato-carcinogenesis. Science 215, 73–75.CrossRefPubMedGoogle Scholar
  25. Peers, F., Bosch, X., Kaldor, J., Linsell, A., and Pluumen, M. (1987). Aflatoxin exposure, hepatitis B virus infection and liver cancer in Swaziland. Int. J. Cancer 39, 545–553.Google Scholar
  26. Pohland, A. E. and Wood, G. E. (1987). Occurrence of mycotoxins in food. In Mycotoxins in Food ( P. Krogh, ed.), pp. 35–64. London: Academic Press.Google Scholar
  27. Reddy, M. B., Irvin, T. R., and Randerath, K. (1985). Formation and persistence of sterigmatocystin-DNA adducts in rat liver determined via 32P-postlabeling analysis. Mutat. Res. 152, 85–96.CrossRefPubMedGoogle Scholar
  28. Sabbioni, G., Skipper, P. L., Buchi, G., and Tannenbaum, S. R. (1987). Isolation and characterization of the major serum albumin adduct formed by aflatoxin Bi in vivo in rats. Carcinogenesis 8, 819–824.CrossRefPubMedGoogle Scholar
  29. Schaaper, R. M., Kunkel, T. A., and Loeb, L. A. (1983). Infidelity of DNA synthesis associated with bypass of apurinic sites. Proc. Natl. Acad. Sci. USA 80, 487–491.CrossRefPubMedGoogle Scholar
  30. Shimada, T., and Guengerich, F. P. (1989). Evidence for cytochrome P-45ONF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc. Nat/. Acad. Sci. USA 86, 462–465.Google Scholar
  31. Shimada, T., Nakamura, S., Imaoka, S., and Funae, Y. (1987). Genotoxic and mutagenic activation of aflatoxin Bi by constitutive forms of cytochrome P-450 in rat liver microsomes. Toxicol. Appl. Pharmacol. 91, 13–21.CrossRefPubMedGoogle Scholar
  32. Sun, T. and Chu, Y. (1984). Carcinogenesis and prevention strategy of liver cancer in areas of prevalence. J. Cell Physiol. Supp/. 3, 39–44.Google Scholar
  33. Swenson D.H., Miller J.A., and Miller E.C. (1975). The reactivity and carcinogenicity of aflatoxin Bi-2,3-dichloride, a model for the putative 2,3-oxide metabolite of aflatoxin Bi. Cancer Res. 35, 3811–3823.Google Scholar
  34. Takayama, K., Wakabayashi, K. L., Hsieh, D. P. H., Sugimura, T., and Nagao, M. (1989). Detection of aflatoxin-DNA adducts in liver of humans in Taiwan and Japan. Abstract. The 1989 International Chemical Congress of Pacific Basin Societies, Honolulu, Hawaii, December, 1989.Google Scholar
  35. Ueno Y., Ishii K., Omata Y., Kamataki T., and Kato R. (1983). Specificity of hepatic cytochrome P-450 isoenzymes from PCB-treated rats and participation of cytochrome b5 in the activation of aflatoxin Bi. Carcinogenesis 4, 1071–1077.CrossRefPubMedGoogle Scholar
  36. Van Rensburg, S. J., Cook-Mozaffari, P., Van Schakkwyk, D. J., Van Der Watt, J. J., Vincent, T. J., and Purchase, I. F. (1985). Hepatocellular carcinoma and dietary aflatoxin in Mozambique and Transkei. Br. J. Cancer 51, 713–726.CrossRefPubMedGoogle Scholar
  37. Wogan, G. N. (1989). Molecular and cellular events associated with aflatoxin-induced hepatocarcinogenesis. Pure Appl. Chem. 61, 1–6.CrossRefGoogle Scholar
  38. Wong J.J. and Hsieh D.P.H. (1976). Mutagenicity of aflatoxins related to their metabolism and carcinogenic potential. Proc. Natl. Acad. Sci. USA 73, 2241–2244.CrossRefPubMedGoogle Scholar
  39. Wong J.J., Singh R., and Hsieh D.P.H. (1977). Mutagenicity of fungal metabolites related to aflatoxin biosynthesis. Mutat. Res. 44, 447–450.Google Scholar
  40. Yang, S. S., Taub, J. V., Modsli, R., Vieira, W., Yasei, P., and Yang, G. C. (1985). Dose dependency of aflatoxin Bi binding on human high molecular weight DNA in the activation of Proto-Oncogene. Environ. Health Perspect. 62, 231–238.Google Scholar
  41. Yu, F. (1983). Preferential binding of aflatoxin Bi to the transcriptionally active regions of rat liver nucleolar chromatin in vivo and in vitro. Carcinogenesis 4, 889–893.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Dennis P. H. Hsieh
    • 1
  • David N. Atkinson
    • 1
  1. 1.Department of Environmental ToxicologyUniversity of California at DavisDavisUSA

Personalised recommendations