The Role of Hepatic Metabolites of Benzene in Bone Marrow Peroxidase-Mediated Myelo- and Genotoxicity

  • George Kalf
  • Robert Shurina
  • John Renz
  • Michael Schlosser
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 283)


Chronic exposure of humans to benzene causes bone marrow depression leading to pancytopenia and aplastic anemia (Goldstein, B.D., 1983). Benzene also causes genotoxic effects such as structural chromosome aberrations and DNA strand breaks (Dean, B.J., 1985) that might be related to the increased incidence of acute myelogenous leukemia that is associated with chronic exposure (Infante, P.F., White, M.C., 1983; Aksoy, M., 1985; Arp, E.W., et al., 1983).


Arachidonic Acid Micronucleus Formation Arachidonic Acid Cascade Bone Marrow Cellularity Structural Chromosome Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksoy, M. (1985). Malignancies due to occupational exposure to benzene. Am. J. Ind.Med., 7, 395–402.CrossRefPubMedGoogle Scholar
  2. Arp, E.W., Wolf, P.H., Checkoway, H. (1983). Lymphocyte leukemia and exposures to benzene and other solvents in the rubber industry. J. Occup. Med., 25, 598–602.PubMedGoogle Scholar
  3. Dean, B.J. (1985). Recent findings on the genetic toxicology of benzene, toluene, xylenes and phenols. Mutat. Res., 154, 153–181.PubMedGoogle Scholar
  4. Frash, V.N., Yushkov, B.G., Karalulov, A.V., and Suratov, V.L. (1976). Mechanism of action of benzene on hematopoiesis. Investigation of hematopoietic stem cells. Bull. Exp. Biol. Med., 83, 985–987.Google Scholar
  5. Gaido, K., and Wierda, D. (1986). Hydroquinone suppression of bone marrow stromal cell supported hematopoiesis in vitro is associated with prostaglandin E2 production. Toxicologist., 6, 286.Google Scholar
  6. Gaido, K.W., and Wierda, D. (1987). Suppression of bone marrow stromal cell function by benzene and hydroquinone is ameliorated by indomethacin. Toxicol. Appt. Pharmacol., 89 378–390.CrossRefGoogle Scholar
  7. Gentile, P.S., and Pelus, L.M. (1987). In vivo modulation of myelopoiesis by prostaglandin E2. II. Inhibition of granulocyte-monocyte progenitor cell (CFUGM) cell-cycle rate. Exp. Hematol., 15, 119–126.PubMedGoogle Scholar
  8. Goldstein, B.D. (1983). Clinical hematotoxicity of benzene. Adv. Mod. Environ. Toxicol., 4, 51–61.Google Scholar
  9. Greenlee, W.F., Gross, E.A., Irons, R.D. (1981). A study on the disposition of 14C-labeled, phenol, catechol and hydroquinone in rat during whole-body autoradiography. Chem.-Biol. Interact., 33, 285–299.CrossRefPubMedGoogle Scholar
  10. Infante, P.F., White, M.C. (1983). Benzene: epidemiologic observations of leukemia by cell type and adverse health effects associated with low-level exposure. Environ. Health. Perspect., 52, 75–82.CrossRefPubMedGoogle Scholar
  11. Irons, R.D., Heck, H. d’a, Moore, B.J., and Muirhead, K.A. (1979). Effects of short-term benzene administration on bone marrow cell cycle kinetics in the rat. Toxicol. Appl. Pharmacol., 51, 399–409.CrossRefPubMedGoogle Scholar
  12. Irons, R.D. (1985). Quinones as toxic metabolites of benzene. J. Toxicol. Environ. Health., 16, 673–678.CrossRefPubMedGoogle Scholar
  13. Kalf, G.F., Schlosser, M.J., Renz, J.F., and Pirozzi, S.J. (1989). Prevention of benzene-induced myelotoxicity by nonsteroidal anti-inflammatory drugs. Environ. Health. Perspect., 82, 57–64.CrossRefPubMedGoogle Scholar
  14. Koren, H.S., Handwerger, B.S., and Wunderlick (1975). Identification of macrophage-like characteristics in a cultured murine tumor cell line. J. immuno, 114, 894–897.Google Scholar
  15. Lee, E.W., Kocsis, J.J., and Snyder, R. (1974). Acute effects of benzene on 59Fe incorporation into circulating erythrocytes. Toxicol. Appl. Pharmacol., 27, 431–436.CrossRefPubMedGoogle Scholar
  16. Lee, M., Segal, G.M., and Bagby, G.C. (1987). Interleukin-1 induces human bone marrow-derived fibroblasts to produce multilineage hematopoietic growth factors. Exp. Hematol., 15, 983–988.PubMedGoogle Scholar
  17. Lewis, J.G., Odom, B., and Adams, D.O. (1988). Toxic effects of benzene and benzene metabolites on mononuclear phagocytes. Toxicol. Appl. Pharmacol., 92, 246–254.CrossRefPubMedGoogle Scholar
  18. MacEachern, L., Snyder, R., and Laskin, D. (1988). Activation of bone marrow macrophages and PMN following benzene treatment of mice. Toxicologist., 8, 72.Google Scholar
  19. Markey, C.M., Alward, A., Weller, P.E., and Marnett, L.J. (1987). Quantitative studies of hydroperoxide reduction by prostaglandin H synthase. Reducing substrate specificity and the relationship of peroxidase to cyclooxygenase activities. J. Biol. Chem., 262, 6266–6279.PubMedGoogle Scholar
  20. Ohki, S., Ogino, N., Yamamoto, S., and Hayaishi, O. (1979). Prostaglandin hydroperoxidase, an integral part of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes. J. Biol. Chem., 254, 829–836.PubMedGoogle Scholar
  21. Pfankuche, H.J., Kaever, V., and Resch, K. (1986). A possible role of protein kinase C in regulating prostaglandin synthesis of mouse peritoneal macrophages. Biochem. Biophys. Res. Commun., 139, 604–611.CrossRefGoogle Scholar
  22. Pirozzi, S., Schlosser, M., and Kalf, G.F. (1989). Prevention of benzene-induced myelotoxicity and prostaglandin synthesis in bone marrow of mice by inhibitors of prostaglandin H synthase. Immunopharmacol., 18, 39–58.CrossRefGoogle Scholar
  23. Post, G., Snyder, R., and Kalf, G.F. (1986). Metabolism of benzene and phenol in macrophages in vitro and the inhibition of RNA synthesis by benzene metabolites. Cell Biol. Toxicol., 2, 231–246.CrossRefPubMedGoogle Scholar
  24. Rickert, D.E., Baker, T.S., Bus, J.S., Barrow, C.S., Irons, R.D. (1979). Benzene disposition in the rat after exposure by inhalation. Toxicol. Appl. Pharmacol., 49, 417–423.CrossRefPubMedGoogle Scholar
  25. Roghani, M., DaSilva, C., Guvelli, D., and Castagna, M. (1987). Benzene and toluene activate protein kinase C. Carcinogenesis, 8, 1105–1107.CrossRefPubMedGoogle Scholar
  26. Sammett, D., Lee, E.W, Kocsis, J.J, Snyder, R. (1979). Partial hepatectomy reduces both metabolism and toxicity of benzene. J. Toxicol. Environ. Health., 5, 785–792.CrossRefPubMedGoogle Scholar
  27. Sawahata, T., Ricker, D.E., Greenlee, W.F. (1985). Metabolism of benzene and its metabolites in bone marrow. In Toxicology of the Blood and Bone Marrow, Irons, R.D., ed. New York: Raven Press, 141–148.Google Scholar
  28. Schlosser, M.J., and Kalf, G.F. (1989). Metabolic activation of hydroquinone by macrophage peroxidase. Chem.-Biol. Interact., 72, 191–207.CrossRefPubMedGoogle Scholar
  29. Schlosser, M. Shurina, R., and Kalf, G.F. (1989). Metabolism of phenol and hydroquinone to reactive products by macrophage peroxidase or purified prostaglandin H synthase. Environ. Health. Perspect., 82, 229–237.CrossRefPubMedGoogle Scholar
  30. Scott, W.A., Zrike, J.M., Hamill, A.L., Kempe, J., and Cohn, Z.C. (1980). Regulation of arachidonic acid metabolites in macrophages. J. Exp. Med., 152, 324–335.CrossRefPubMedGoogle Scholar
  31. Snyder, R., Jowa, L., Witz, G., Ralf, G.F., and Rushmore, T. (1987). Formation of reactive metabolites of benzene. Arch. Toxicol., 60, 61–64.CrossRefPubMedGoogle Scholar
  32. Thomas, D.J., Reasor, M.J., and Wierda, D. (1989). Macrophage regulation is altered by exposure to the benzene metabolite hydroquinone. Toxicol. Appl. Pharmacol., 97, 440–453.CrossRefPubMedGoogle Scholar
  33. Tunek, A., Platt, K.L., Przybylski, M., Oesch, F. (1980). Multi-step metabolic activation of benzene. Effect of superoxide dismutase on covalent binding to microsomal macromolecules, and identification of glutathione conjugates using high pressure liquid chromatography and field desorption mass spectrometry. Chem.-Biol. Interact., 33, 1–17.CrossRefPubMedGoogle Scholar
  34. Tunek, A., Olofsson, T., Berlin, M. (1981). Toxic effects of benzene and benzene metabolites on granulopoietic stem cells and bone marrow cellularity in mice. Toxicol. Appl. Pharmacol., 59, 149–156.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • George Kalf
    • 1
  • Robert Shurina
    • 1
  • John Renz
    • 1
  • Michael Schlosser
    • 1
  1. 1.The Department of Biochemistry and Molecular BiologyJefferson Medical College of Thomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations