Proto-Oncogene Activation in Rodent and Human Tumors

  • Marshall W. Anderson
  • Ming You
  • Steven H. Reynolds
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 283)


The process of cell transformation is a multistep phenomenon. Increasing evidence suggests that a small set of cellular genes appear to be targets for genetic alterations that contribute to the neoplastic transformation of cells. The development of neoplastia may, in many cases, require changes in at least two classes of cellular genes: proto-oncogenes (Bishop, 1987; Anderson and Reynolds, 1989) and tumor suppressor genes (Weinberg, 1989; Hansen and Cavenee, 1988; Barrett, 1987). For example, both the activation of ras oncogenes and the inactivation of several suppressor genes have been observed in the development of human colon tumors (Stanbridge, 1990) and human lung tumors (Tabahashi et al., 1989; Weston et al., 1989; Reynolds et al., 1989; Minna et al., 1989; Rodenhuis et al., 1988). These two examples illustrate that a cell accumulates several types of genetic alterations in its evolution to a malignant phenotype. The focus of this chapter is to discuss the activation of proto-oncogens in human and rodent tumors and the pattern of mutations in ras oncogenes detected in human and rodent tumors.


Small Cell Lung Cancer Ethyl Carbamate Human Lung Tumor Rodent Tumor Human Tumor Type 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anathaswamy, H.N., Price, J.E., Goldberg, L.H., and Straka, C. (1987). Simultaneous transfer of tumorigenic and metastatic phenotypes by transfection with genomic DNA from a human cutaneous squamous cell carcinoma. Proc. Am. Assoc. Cancer Res. 28, 69.Google Scholar
  2. Anderson, M.W., and Reynolds, S.H. (1989). Activation of oncogenes by chemical carcinogens. In The Pathobiology of Neoplasia ( A. Sirica, Ed.), pp. 291–304. Plenum Press, New York, NY.CrossRefGoogle Scholar
  3. Bailleul, B., Brown, K., Ramsden, M., Akhurst, R.J., Fee, F., and Balmain, A. (1989). Chemical induction of oncogene mutations and growth factor activity in mouse skin carcinogenesis. Environmental Health Perspectives 81, 23–27.CrossRefPubMedGoogle Scholar
  4. Balmain, A., and Brown, K. (1988). Oncogene activation in chemical carcinogenesis. Advances in Cancer Res. 51, 147–182.CrossRefGoogle Scholar
  5. Barrett, J.C., Oshimura, M., and Koi, M. (1987). Role of oncogenes and tumor suppressant genes in a multistep model of carcinogenesis. In Symposium on Fundamental Cancer Research (F. Becker, Ed.), Vol. 38, pp. 45–56.Google Scholar
  6. Barbacid, M. (1987). Ras genes. Ann. Rev. Biochem. 56, 780–813.CrossRefGoogle Scholar
  7. Belinsky, S., Devereux, T., Maronpot, R., Stoner, G., and Anderson, M. (1989). Relationship between the formation of promutagenic adducts and the activation of the K-ras protooncogene in lung tumors from A/J mice treated with nitrosamines. Cancer Res. 49, 5305–5311.PubMedGoogle Scholar
  8. Bishop, J.M. (1989). Oncogenes and clinical cancer. In Oncogenes and Clinical Cancer, pp. 327–358.Google Scholar
  9. Bishop, J.M. (1987). The molecular genetics of cancer. Science (Wash. DC) 235, 303–311.CrossRefGoogle Scholar
  10. Bishop, J.M. (1985). Viral oncogenes. Cell 42, 23–38.CrossRefPubMedGoogle Scholar
  11. Bongarzone, I., Pierotti, M.A., Monzini, N., Mondellini, P., Manenti, G., Donghi, R., Pilotti, S., Grieco, M., Santoro, M., Fusco, A., Vecchio, G., and Della Porta, G. (1989). High frequency of tyrosine kinase oncogenes in human papillary thyroid carcinoma. Oncogene 4, 1457–1462.PubMedGoogle Scholar
  12. Bos, J.L., Fearon, E.R., Hamilton, S.R., Verlaan–de Vries, M., van Boom, J.H., van der Eb, A.J., and Vogelstein, B. (1987). Prevalence of ras gene mutations in human colorectal cancers. Nature 327, 293–299.CrossRefPubMedGoogle Scholar
  13. Bos, J.L., Verlaan–de Vries, M., van der EB, A.J., Janssen, J.W.G., Delwel, R., Lowen berg, B., and Colly, L.P. (1987). Mutations in N–ras predominate in acute myeloid leukemia. Blood 69, 1237–1241.PubMedGoogle Scholar
  14. Brown, K., Buchmann, A., and Balmain, A. (1989). Carcinogen–induced mutations in the mouse c–Ha–ras gene provide evidence of multiple pathways for tumor progression. Proc. Natl. Acad. Sci. USA 87, 538–542.CrossRefGoogle Scholar
  15. Burmer, G.C., and Loeb, L.A. (1989). Mutations in the KRAS2 oncogene during progressive stages of human colon carcinoma. Proc. Natl Acad. Sci. USA 86, 2403–2407.CrossRefPubMedGoogle Scholar
  16. Farr, C.J., Marshall, C.J., Easty, D.J., Wright, N.A., Powell, S.C., and Paraskeva, C. (1988). A study of ras gene mutations in clonic adenomas from familial polyposis coli patients. Oncogene 3, 673–678.PubMedGoogle Scholar
  17. Fasano, O., Birnbaum, D., Edlund, L., Fogh, J., and Wigler, M. (1984). New human genes detected by tumorigenicity assay. Mal. Cell. Biol. 4, 1695–1705.Google Scholar
  18. Fujita, J., Srivastava, S.K., Kraus, M.H., Rhim, J.S., Tronick, S.R., and Aaronson, S.A. (1985). Frequency of molecular alterations affecting ras protooncogenes in human urinary tract tumors. Proc. Natl. Acad. Sci. USA 82, 3849–3853.CrossRefPubMedGoogle Scholar
  19. Grunewald, K., Lyons, J., Frohlich, A., Feichtinger, H., Weger, R.A., Schwab, G., Janssen, J.W.G., and Bartram, C.R. (1989). High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas. Int. J. Cancer 43, 1037–1041.CrossRefPubMedGoogle Scholar
  20. Guerrero, I., and Pellicer, A. (1987). Mutational activation of oncogenes in animal model systems of carcinogenesis. Mutation Research 185, 293–308.PubMedGoogle Scholar
  21. Hansen, M.F., and Cavenee, W.K. (1988). Tumor suppressors: recessive mutations that lead to cancer. Cell 53, 172–173.CrossRefGoogle Scholar
  22. Hirari, H., Kobayashi, Y., Mano, H., Hagiwara, K., Maru, Y., Omine, M., Mizoguxhi, H., Nishida, J., and Takaku, F. (1987). A point mutation at codon 13 of the N-ras oncogene in myelodysplastic syndrome.Nature (Lond.). 327, 430–432.CrossRefGoogle Scholar
  23. Konopka, J.B., Watanabe, S.M., and Witte, O.N. (1984). An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 37, 1035–1042.CrossRefPubMedGoogle Scholar
  24. Leder, P., Battery, J., Lenior, G., Moulding, C., Murphy, W., Potter, H., Stewart, T., and Taub, R. (1984). Translocations among antibody genes in human cancer. Science 22, 765–771.Google Scholar
  25. Liu, E., Hjelle, B., and Bishop, M. (1988). Transforming genes in chronic myelogenous leukemia. Proc. Natl. Acad. Sci. USA 85, 1952–1956.CrossRefPubMedGoogle Scholar
  26. Liu, E., Hjelle, B., Morgan, R., Hecht, F., and Bishop, M. (1987). Mutations of the kirsten-ras proto-oncogene in human preleukaemia. Nature 330, 186–188.CrossRefPubMedGoogle Scholar
  27. McCormick, F. (1989). Ras oncogenes. In Oncogenes and the Molecular Origin of Cancer. (R.A. Weinberg, Ed.), pp. 125–145, Cold Spring Harbor, NY.Google Scholar
  28. Milburn, M.V., Tong, L., DeVos, A.M., Brunger, A., Yamaizumi, Z., Nishimura, S., and Kim, S. (1990). Molecular switch for signal transduction: Structural differences between active and inactive forms of protooncogenic ras proteins. Science 247, 939–945.CrossRefPubMedGoogle Scholar
  29. Minna, J., Schutte, J., Viallet, J., Thomas, F., Kaye, F., Takahashi, T., Nau, M., Whang-Peng, J., Birrer, M., and Gazdar, A.F. (1989). Transcription factors and recessive oncogenes in the pathogenesis of human lung cancer. Int. J. Cancer 4, 32–34.CrossRefGoogle Scholar
  30. Miller, J., and Miller, E. (1983). The metabolic activation and nucleic acid adducts of naturally-occurring carcinogens: recent results with ethyl carbamate and the spice flavors safrole and estragole. Br. J. Cancer 48, 1–15.CrossRefPubMedGoogle Scholar
  31. Newcomb, E.W., Diamond, L.E., Sloan, S.R., Corominas, M., Gurrerro, I., and Pellicer, A. (1989). Radiation and chemical activation of ras oncogenes in different mouse strains. Environmental Health Perspectives 81, 33–37.CrossRefPubMedGoogle Scholar
  32. Ochiya, T., Fujiyama, A., Fukushige, S., Hatada, I., and Matsubara, K. (1986). Molecular cloning of an oncogene from a human hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA 83, 4993–4997.CrossRefPubMedGoogle Scholar
  33. Pai, E., Kabsch, W., Krengel, U., Holmes, K., John, J., and Wittinghofer, A. (1989). Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341, 209–214.CrossRefPubMedGoogle Scholar
  34. Perucho, M., Forrester, K., Almoguera, C., Kahn, S., Lama, C., Shibata, D., Arnheim, N., and Grizzle, W.E. (1989). Expression and mutational activation of the c-Ki-ras gene in human carcinomas. Cancer Cells 7, 137–141.Google Scholar
  35. Philips, D.H., Hewer, A., Martin, C.N., Garner, R.C., and King, M.M. (1988). Correlation of DNA adduct levels in human lung with cigarette smoking. Nature 336, 790–792.CrossRefGoogle Scholar
  36. Reynolds, S.H., Hunnicutt, C.K., Brown, K.C., Beattie, T., Pero, R., and Anderson, M.W. (1989). Ras oncogenes in human lung tumors associated with exposure to cigarette smoke. J. Cell. Biochemistry.Google Scholar
  37. Reynolds, S.H., Stowers, S.J., Maronpot, R.R., Aaronson, S.A., and Anderson, M.W. (1987). Activated oncogenes in B6C3F1 mouse liver tumors: implications for risk assessment. Science 237, 1309–1317.CrossRefPubMedGoogle Scholar
  38. Rodenhuis, S., Slebos, R.J.C., Boot, A.J.M., Evers, S.G., Mooi, W.J., Wagenaar, S.S., Bodegom, P.C., and Bos, J.L. (1988). Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung. Cancer Research 48, 5738–5741.PubMedGoogle Scholar
  39. Sakamoto, H., Mori, M., Tara, M., Yoshida, T., Matsukawa, S., Shimizu, K., Sekiguchi, M., Terada, M., and Sugimura, T. (1986). Transforming gene from human stomach cancers and a noncancerous portion of stomach mucosa. Proc. Natl. Acad. Sci. USA 83, 3997–4001.CrossRefPubMedGoogle Scholar
  40. Schechter, A.L., Stern, D.F., Vaidyanathan, L., Decker, S.J., Drebin, J.A., Greene, M.I., and Weinberg, R.A. (1984). The neu oncogene: An erb-B-related gene encoding a 185,000-M, tumor antigen. Nature (Lond.). 312, 513–516.CrossRefGoogle Scholar
  41. Shibata. D., Almoguera, C., Forrester, K., Dunitz, J., Martin, S.E., Cosgrove, M.M., Perucho, M., and Arnheim, N. (1990). Detection of c-K-ras mutations in fine needle aspirates from human pancreatic adenocarcinomas. Cancer Res. 50, 1279–1283.PubMedGoogle Scholar
  42. Shih, C.S., Shilo, B., Goldfarb, M.P., Dannenberg, A., and Weinberg, R.A. (1979). Passage of phenotypes of chemically transformed cells via transfection DNA and chromatin. Proc. Natl. Acad. Sci. USA 76, 5714–5718.CrossRefPubMedGoogle Scholar
  43. Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A., and McGuire, W. (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182.CrossRefPubMedGoogle Scholar
  44. Sloan, S.R., Newcomb, E.W., and Pellicer, A. (1990). Neutron radiation can activate K-ras via a point mutation in codon 146 and induces a different spectrum of ras mutations than does gamma radiation. Mol. and Cell. Biol. 10, 405–408.Google Scholar
  45. Smit, V.T.H.B.M., Boot, A.J.M., Smits, A.M.M., Fleuren, G, Cornelisse, C.J., and Bos, J.L. (1988). KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Research 16, 7773–7782.CrossRefPubMedGoogle Scholar
  46. Stanbridge, E.J. (1990). Identifying tumor suppressor genes in human colorectal cancer. Science 247, 12–13.CrossRefPubMedGoogle Scholar
  47. Sukumar, A. (1988). Involvement of oncogenes in carcinogenesis. In Cellular and Molecular Biology of Mammary Cancer ( Medina, D., Kidwell, W., Heppner, G., and Anderson, E., Eds.), pp. 381–398. Plenum Press, New York, London.Google Scholar
  48. Tada, M., Ornata, M., and Ohto, M. (1990). Analysis of ras gene mutations in human hepatic malignant tumors by polymerase chain reaction and direct sequencing. Cancer Res. 50, 1121–1124.PubMedGoogle Scholar
  49. Takahashi, T., Nau, M.M., Chiba, I., Birrer, M.J., Rosenberg, R.K., Vincour, M., Levitt, M., Pass, H., Gazdar, A.F., Minna, J.D. (1989). p53: A frequent target for genetic abnormalities in lung cancer. Science 240, 491–494.CrossRefGoogle Scholar
  50. Tsujimoto, Y., Ikegaki, Y.N., and Croce, C.M. (1988). Characterization of the protein product of bel-2, the gene involved in human follicular lymphoma. Oncogene 2, 3–9.Google Scholar
  51. Tsujimoto, Y., and Croce, C.M. (9186). Analysis of the structure, transcripts, and protein products of the bel- 2, the gene involved in human follicular lymphoma. Proc. Natl. Acad. Sci.. 83, 5214–5218.CrossRefPubMedGoogle Scholar
  52. Varmus, H. (1989). An historical overview of oncogenes. In Oncogenes and the Molecular Origin of Cancer ( R.A. Weinberg, Ed.), pp. 3–44. Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY.Google Scholar
  53. Van ‘T Veer, L.J., Burgering, B.M.T., Versteeg, R., Boot, A.J.M., Ruiter, D.J., Osanto, S., Schrier, P.I., and Bos, J.L. (1989). N-ras mutations in human cutaneous melanoma from sun-exposed body sites. Mol. Cell. Biol. 9, 3114–3116.Google Scholar
  54. Visvanathan, K., Pocock, R.D., Summerhayes, I.C. (1988). Preferential and novel activation of H-ras in human bladder carcinomas. Oncogene Res. 3, 77–86.PubMedGoogle Scholar
  55. Vogelstein, B., Fearon, E.R., Hamilton, S.R., Kern, S.E., Presinger, A.C., Leppert, M., Nakamura, Y., White, R., Smits, A.M.M., and Bos, J.L. (1988). Genetic alterations during colorectal-tumor development. The New England J of Med. 319, 525–532.CrossRefGoogle Scholar
  56. Wang, Y., You, M., Reynolds, S., Stoner, G., and Anderson, M. (1990). Mutational activation of the cellular Harvey ras oncogene in rat esophageal papillomas induced by ethylbenzylnitrosamine. Cancer Res. 50, 1591–1595.PubMedGoogle Scholar
  57. Weinberg, R.A. (1985). Oncogenes, antioncogenes, and the molecular basis of multistep carcinogenesis. Cancer Res. 49, 3713–3721.Google Scholar
  58. Westin, E.H. (1989). Oncogenes. In The Pathobiology of Neoplasia ( A. Sirica, Ed.), pp. 275–290. Plenum Press, New York, NY.CrossRefGoogle Scholar
  59. Weston, A., Willey J.C., Modali, R., Sugimura, H., McDowell, E.M., Resau, J., Light, B., Haugen, A., Mann, D.L., Trump, B.F., and Harris, C.C. (1989). Differential DNA sequence deletions from chromosomes 3, 11, 13, and 17 in squamous-cell carcinoma, large-cell carcinoma, and adenocarcinoma of the human lung. Proc. Natl. Acad. Sci. USA. 86, 5099–5103.CrossRefPubMedGoogle Scholar
  60. Wiseman, R., Stowers, S., Miller, E., Anderson, M., and Miller, J. (1986). Activating mutations of c-Ha-ras protooncogenes in chemically induced hepatomas of the male B6C3F1 mouse. Proc. Natl. Acad. Sci. USA. 83, 5285–5289.CrossRefGoogle Scholar
  61. Wynder, E.L. (1972). Etiology of lung cancer. Reflections on two decades of research. Cancer 30, 1332–1337.CrossRefPubMedGoogle Scholar
  62. Yoshida, T., Miyagawa, K., Odagiri, H., Sakamoto, H., Little, P.F.R., Terada, M., and Sugimura, T. (1987). Genomic sequence of hst, a transforming gene encoding a protein homologous to fibroblast growth factors and the int-2-encoded protein. Proc. Natl. Acad. Sci. USA. 84, 7305–7310.CrossRefPubMedGoogle Scholar
  63. You, M., Candrian, U., Maronpot, R., Stoner, G., and Anderson, M. (1989). Activation of the K-ras protooncogene in spontaneously occurring and chemically-induced lung tumors of the strain A mouse. Proc. Natl. Acad. Sci. USA. 86, 3070–3074.CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Marshall W. Anderson
    • 1
  • Ming You
    • 1
  • Steven H. Reynolds
    • 1
  1. 1.Department of Health and Human ServicesNational Institutes of HealthResearch Triangle ParkUSA

Personalised recommendations