Advertisement

Molecular Targets of Chemical Mutagens

  • Bradley D. Preston
  • Rupa Doshi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 283)

Abstract

Most mutagens are biologically active by virtue of their chemical reactivity. The pioneering work of the Millers (reviewed in Miller and Miller, 1974, 1981) and others (Searle, 1984 and references therein) clearly established that most chemical mutagens (or their metabolites) are electrophilic and covalently bind to cellular macromolecules. Proteins were first identified as cellular targets (Miller, 1951), and it was soon recognized that RNA and DNA are also extensively damaged by mutagens (for reviews see: Searle, 1984; Miller and Miller, 1974). Theoretically, every cellular nucleophile is a potential target for damage by electrophilic mutagens.

Keywords

Replication Fork Ribonucleotide Reductase Exonuclease Activity Purine Nucleoside Phosphorylase dNTP Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abersold, P. M. (1983). Mutation induction by 5-fluorodeoxyuridine in synchronous Chinese hamster cells. Cancer Res. 39, 808–810.Google Scholar
  2. Adams, R. L. P., Knowler, J. T., and Leader, D. P. (1986). The Biochemistry of the Nucleic Acids. Chapman and Hall, New York.CrossRefGoogle Scholar
  3. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D. (1989). Molecular Biology of the Cell. Garland Publishing, Inc., New York.Google Scholar
  4. Arecco, A., Mun, B.-J., and Mathews, C. K. (1988). Deoxyribonucleotide pools as targets for mutagenesis by N-methyl-N-nitrosourea. Mutation Res. 200, 165–175.PubMedCrossRefGoogle Scholar
  5. Arpaia, E., Ray, P. N., and Siminovitch, L. (1983). Isolations of mutants of CHO cells resistant to 6-(p-hydrophenylazo)-uracil, II. Mutants auxotrophic for deoxypyrimidines. Somat. Cell. Genet. 9, 287–297.PubMedCrossRefGoogle Scholar
  6. Ashman, C. R., and Davidson, R. L. (1981). Bromodeoxyuridine mutagenesis in mammalian cells is related to deoxyribonucleotide pool imbalance. Moil. Cell. Biol. 1, 254–260.Google Scholar
  7. Ayusawa, D., Iwata, K., and Seno, T. (1983). Unusual sensitivity to bleomycin and joint resistance to 9-p-D-arabinofuranosyladenine and 1–6-D-arabinofuranosylcytosine of mouse FM3A cell mutants with altered ribonucleotide reductase and thymidylate synthase. Cancer Res. 43, 814–818.PubMedGoogle Scholar
  8. Baranowska, H., Zaborowska, D., and Zuk, J. (1987). Decreased u.v. mutagenesis in an excision-deficient mutant of yeast. Mutagenesis 2, 1–6.PubMedCrossRefGoogle Scholar
  9. Basu, A. K., and Essigmann, J. M. (1988). Site-specifically modified oligodeoxynucleotides as probes for the structural and biological effects of DNA damaging agents. Chemical Research in Toxicology 1, 1–18.PubMedCrossRefGoogle Scholar
  10. Basu, A. K., and Essigmann, J. M. (1990). Site-specifically alkylated oligodeoxynucleotides: Probes for mutagenesis, DNA repair and the structural effects of DNA damage. Mutation Res., in press.Google Scholar
  11. Bebenek, K., Abbotts, J., Roberts, J. D., Wilson, S. H., and Kunkel, T. A. (1989). Specificity and mechanism of error-prone replication by human immunodeficiency virus-1 reverse transcriptase. J. Biol. Chem. 264, 16948–16956.PubMedGoogle Scholar
  12. Beckman, R. A., Mildvan, A. S., and L.A., L. (1985). On the fidelity of DNA replication: Manganese mutagenesis in vitro. Biochemistry 24, 5810–5817.PubMedCrossRefGoogle Scholar
  13. Bernad, A., Blanco, L., Lzaro, J. M., Martin, G., and Salas, M. (1989). A conserved 3’ → 5’ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59, 219–228.PubMedCrossRefGoogle Scholar
  14. Bhanot, O. S., and Ray, A. (1986). The in vivo mutagenic frequency and specificity of 06-methylguanine in 4)X174 replicative form DNA. Proc. Natl. Acad. Sci. USA 83, 7348–7352.PubMedCrossRefGoogle Scholar
  15. Bishop, D. K., Andersen, J., and Kolodner, R. D. (1989). Specificity of mismatch repair following transformation of Saccharomyces cerevisiae with heteroduplex plasmid DNA. Proc. Natl. Acad. Sci. USA 86, 3713–3717.PubMedCrossRefGoogle Scholar
  16. Brigati, D. J., Myerson, D., Leary, J. J., Spalholz, B., Travis, S. Z., Fong, C. K. Y., Hsiung, G. D., and Ward, D. C. (1983). Detection of viral genomes in cultured cells and paraffin-embedded tissue sections using biotin-labeled hybridization probes. Virology 126, 32–50.PubMedCrossRefGoogle Scholar
  17. Brown, T. C., and Jiricny, J. (1987). A specific mismatch repair event protects mammalian cells from loss of 5-methylcytosine. Cell 50, 945–950.PubMedCrossRefGoogle Scholar
  18. Busbee, D. L., Joe, C. O., Norman, J. O., and Rankin, P. W. (1984). Inhibition of DNA synthesis by an electrophilic metabolite of benzo[alpyrene. Proc. Natl. Acad. Sci. USA 81, 5300–5304.PubMedCrossRefGoogle Scholar
  19. Byrnes, J. J., Downey, K. M., Que, B. G., Lee, M. Y. W., Black, V. L., and So, A. G. (1977). Selective inhibition of the 3’ to 5’ exonuclease activity associated with DNA polymerases: A mechanism of mutagenesis. Biochemistry 16, 3740–3746.PubMedCrossRefGoogle Scholar
  20. Caras, I. W., Maclnnes, M. A., Persing, D. H., Coffino, P., and Martin Jr., D. W. (1982). Mechanism of 2-aminopurine mutagenesis in mouse T-lymphosarcoma cells. Moi. Cell. Biol. 2, 1096–1103.Google Scholar
  21. Carothers, A. M., Steigerwalt, R. W., Urlaub, G., Chasin, L. A., and Grunberger, D. (1989). DNA base changes and RNA levels in N-acetoxy-2-acetylaminofluoreneinduced dihydrofolate reductase mutants of Chinese hamster ovary cells. J. Mol. Biol. 208, 417–428.PubMedCrossRefGoogle Scholar
  22. Chambers, R. W., Sledziewska-Gojska, W., Hirani-Hojatti, S., and Borowy-Borowski, H. (1985). UVRA and recA mutations inhibit a site-specific transition produced by a single 06-methylguanine in gene G of bacteriophage 4X174. Proc. Natl. Acad. Sci. USA 82, 7173–7177.PubMedCrossRefGoogle Scholar
  23. Chan, J. Y. H., and Becker, F. F. (1979). Decreased fidelity of DNA polymerase activity during N-2-fluorenylacetamide hepatocarcinogenesis. Proc. Nati. Acad. Sci. USA 76, 814–818.CrossRefGoogle Scholar
  24. Chan, J. Y. H., and Becker, F. F. (1981). Fidelity of DNA synthesis in vitro by carcinogen-reacted DNA polymerases and carcinogen modified templates. J. Supramol. Struc. Supp1. 5, 209.Google Scholar
  25. Cleaver, J. E. (1982). Inactivation of ultraviolet repair in normal and xeroderma pigmentosum cells by methyl methansfulfonate. Cancer Res. 42, 860–863.PubMedGoogle Scholar
  26. Correia, I. S., and Tyrrell, R. M. (1979). Lethal interaction between ultraviolet radiations and methyl methane sulfonate in repair proficient and repair deficient strains of Escherichia coliDD. Photochem. Photobiol. 29, 521–526.PubMedCrossRefGoogle Scholar
  27. Cox, E. C. (1976). Bacterial mutator genes and the control of spontaneous mutation. Ann. Rev. Genet. 10, 135–156.PubMedCrossRefGoogle Scholar
  28. Das, S. K., Benditt, E. P., and Loeb, L. A. (1983). Rapid changes in deoxynucleoside triphosphate pools in mammalian cells treated with mutagens. Biochem. Biophys. Res. Comm. 114, 458–464.PubMedCrossRefGoogle Scholar
  29. Das, S. K., and Loeb, L. A. (1984). UV irradiation alters deoxynucleoside triphosphate pools in Escherichia coli. Mutation Res. 131, 97–100.Google Scholar
  30. Demple, B., Sedgwick, B., Robins, P., Totty, N., Waterfield, M. D., and Lindahl, T. (1985). Active site and complete sequence of the suicidal methyltransferase that counters alkylation mutagenesis. Proc. Natl. Acad. Sci. USA 82, 2688–2692.CrossRefGoogle Scholar
  31. Dolan, M. E., Morimoto, K., and Pegg, A. E. (1985). Reduction of 06-alkylguanineDNA alkyltransferase activity in HeLa cells treated with 06-alkylguanines. Cancer Res. 45, 6413–6417.PubMedGoogle Scholar
  32. Doshi, R., and Preston, B. D. (1990). Effect of oxidative exonuclease damage on the fidelity of T7 DNA polymerase. Proc. Amer. Assoc. Cancer Res. 31, 100.Google Scholar
  33. Drake, J. W. (1969). Comparative rates of spontaneous mutation. Nature 221, 1132.PubMedCrossRefGoogle Scholar
  34. Elledge, S. J., and Davis, R. W. (1987). Indentification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability. Mol. Cell. Biol. 7, 2783–2793.PubMedGoogle Scholar
  35. Fersht, A. R. (1979). Fidelity of replication of phage 4X174 DNA by DNA polymerase III holoenzyme: spontaneous mutation by misincorporation. Proc. Natl. Acad. Sci. USA 76, 4946–4950.PubMedCrossRefGoogle Scholar
  36. Friedberg, E. C. (1985). DNA Repair. W.H. Freeman and Company, New York.Google Scholar
  37. Fuchs, R. P. P., Schwartz, N., and Duane, M. P. (1981). Hot spots of frameshift mutations induced by the ultimate carcinogen N-acetoxy-N-2-acetylaminofluorene. Nature 294, 657–659.PubMedCrossRefGoogle Scholar
  38. Gentil, A., Margot, A., and Sarasin, A. (1984). Apurinic sites cause mutations in simian virus 40. Mutation Res. 129, 141–147.PubMedCrossRefGoogle Scholar
  39. Gentil, A., Margot, A., and Sarasin, A. (1986). 2-(N-acetoxy-N-acethylamino)fluorene mutagenesis in mammalian cells: Sequence-specific hot spot. Proc. Natl. Acad. Sci. USA 83, 9556–9560.PubMedCrossRefGoogle Scholar
  40. Goodman, M. F. (1988). DNA replication fidelity: kinetics and thermodynamics. Mutation Res. 200, 11–20.PubMedCrossRefGoogle Scholar
  41. Gruenert, D. C., and Cleaver, J. E. (1981). Repair of ultraviolet damage in human cells also exposed to agents that cause strand breaks, crosslinks, monoadducts and alkylations. Chem.-Biol. Interact. 33, 163–177.PubMedCrossRefGoogle Scholar
  42. Haynes, R. H., and Kunz, B. A. (1988). Metaphysics of regulated deoxyribonucleotide biosynthesis. Mutation Res. 200, 5–10.PubMedCrossRefGoogle Scholar
  43. Hibner, U., and Alberts, B. M. (1980). Fidelity of DNA replication catalysed in vitro on a natural DNA template by the T4 bacteriophage multi)enzyme complex. Nature 285, 300–305.PubMedCrossRefGoogle Scholar
  44. Hoar, D. I., and Dimnik, L. S. (1985). Induction of mitochondrial mutations in human cells by methotrexate. In Genetic Consequences of Nucleotide Pool Imbalance (F. J. de Serres, Ed.), pp. 265–282. Plenum Press, New York.CrossRefGoogle Scholar
  45. Hochauser, S. J., and Weiss, B. (1978). Escherichia coli mutants defective in deoxyuridine triphosphatase. J. Bacteriol. 134, 157–166.Google Scholar
  46. Hopkins, R. L., and Goodman, M. F. (1985). Ribonucleoside and deoxyribonucleoside triphosphate pools during 2-aminopurine mutagenesis in T4 mutator-, wild type-, and antimutator-infected Escherichia coli. J. Biol. Chem. 260, 6618–6622.Google Scholar
  47. Hyodo, M., Ito, N., and Suzuki, K. (1984). Deoxynucleoside triphosphate pool of mouse FM3A cell lines unaffected by mutagen treatment. Biochem. Biophys. Res. Commun. 122, 1160–1165.PubMedCrossRefGoogle Scholar
  48. Jimenez-Sanchez, A. (1976). The effect of nitrosoguanidine upon DNA synthesis in vitro. Molec. Gen. Genet. 145, 113–117.Google Scholar
  49. Karran, P. (1985). Possible depletion of a DNA repair enzyme in human lymphoma cells by subversive repair. Proc. Natl. Acad. Sci. 82, 5285–5289.PubMedCrossRefGoogle Scholar
  50. Kaufman, E. R. (1986). Altered CTP synthetase activity confers resistance to 5- bromodeoxyuridine toxicity and mutagenesis. Mutation Res. 161, 19–27.PubMedCrossRefGoogle Scholar
  51. Kazmers, I. S., Mitchell, B. S., Dadonna, P. E., Wotring, L. L., Townsend, L. B., and Kelley, W. N. (1981). Inhibition of purine nucleoside phosphorylase by 8- aminoguanosine: Selective toxicity for T lymphoblasts. Science 214, 1137–1139.PubMedCrossRefGoogle Scholar
  52. Klenow, H., and Overgaard-Hansen, K. (1981). Differential effects of N-carboxymethylisatoylation on the DNA polymerase activity, the 5’ 3’- exonuclease activity and the 3’→5’-exonuclease activity of DNA polymerase I of Escherichia coll. Biochim. Biophys. Acta 654, 187–193.Google Scholar
  53. Kornberg, A. (1980). DNA Replication. W.H. Freeman & Co., San Francisco.Google Scholar
  54. Kraemer, K. H., and Seidman, M. M. (1989). Use of supF, an Escherichia coli tyrosine suppressor tRNA gene, as a mutagenic target in shuttle-vector plasmids. Mutation Res. 220, 61–72.PubMedGoogle Scholar
  55. Kramer, B., Kramer, W., Williamson, M. S., and Fogel, S. (1989). Heteroduplex DNA correction in Saccharomyces cerevisiae is mismatch specific and requires functional PMS genes. Molec. Cell. Biol. 9, 4432–4440.PubMedGoogle Scholar
  56. Kunkel, T. A. (1985). The mutational specificity of DNA polymerase-f3 during in vitro DNA synthesis. Production of frameshift base substitution, and deletion mutations. J. Biol. Chem. 260, 5787–5796.PubMedGoogle Scholar
  57. Kunkel, T. A. (1988). Exonucleolytic proofreading. Cell 53, 837–840.PubMedCrossRefGoogle Scholar
  58. Kunkel, T. A., and Bebenek, K. (1988). Recent studies of the fidelity of DNA synthesis. Biochem. Biophys. Acta 951, 1–15.PubMedGoogle Scholar
  59. Kunkel, T. A., and Loeb, L. A. (1979). On the fidelity of DNA replication. Effect of divalent metal ion activators and deoxyribonucleoside triphosphate pools on in vitro mutagenesis. J. Biol. Chem. 254, 5718–5725.PubMedGoogle Scholar
  60. Kunkel, T. A., Meyer, R. R., and Loeb, L. A. (1979). Single-strand binding protein enhances fidelity of DNA synthesis in vitro. Proc. Natl. Acad. Sci. USA 76, 6331–6335.PubMedCrossRefGoogle Scholar
  61. Kunkel, T. A., Schaaper, R. M., Beckman, R. A., and Loeb, L. A. (1981). On the fidelity of DNA replication. Effect of the next nucleotide on proofreading. J. Biol. Chem. 256, 9883–9889.PubMedGoogle Scholar
  62. Kunkel, T. A., Silber, J. R., and Loeb, L. A. (1982). The mutagenic effect of deoxynucleotide substrate imbalances during DNA synthesis with mammalian DNA polymerases. Mutation Res. 94, 413–419.PubMedCrossRefGoogle Scholar
  63. Kunz, B. A. (1982). Genetic effects of deoxyribonucleotide pool imbalances. Environ. Mutagenesis 4, 695–725.CrossRefGoogle Scholar
  64. Kunz, B. A. (1988). Mutagenesis and deoxyribonucleotide pool imbalance. Mutation Res. 200, 133–147.PubMedCrossRefGoogle Scholar
  65. Kunz, B. A., Taylor, G. R., and Haynes, R. H. (1986). Intrachromosomal recombination is induced in yeast by inhibition of thymidylate biosynthesis. Genetics 114, 375–392.PubMedGoogle Scholar
  66. Lahue, R. S., Au, K. G., and Modrich, P. (1989). DNA mismatch correction in a defined system. Science 245, 160–164.PubMedCrossRefGoogle Scholar
  67. Langer, P. R., Waldrop, A. A., and Ward, D. C. (1981). Enzymatic synthesis of biotin-labeled polynucleotides: Novel nucleic acid affinity probes. Proc. Natl. Acad. Sci. USA 78, 6633–6637.PubMedCrossRefGoogle Scholar
  68. Larson, K., Sahm, J., Shendar, R., and Strauss, B. (1985). Methylation-induced blocks to in vitro DNA replication. Mutation Res. 150, 77–84.PubMedCrossRefGoogle Scholar
  69. Lasken, R. S., and Goodman, M. F. (1984). The biochemical basis of 5-bromouracilinduced mutagenesis. J. Biol. Chem. 259, 11491–11495.PubMedGoogle Scholar
  70. Lebkowski, J. S., Clancy, S., Miller, J. H., and Calos, M. P. (1985). The lacl shuttle: Rapid analysis of the mutagenic specificity of ultraviolet light in human cells. Proc. Natl. Acad. Sci. USA 82, 8606–8610.PubMedCrossRefGoogle Scholar
  71. LeClerc, J. E., and Istock, N. L. (1982). Specificity of UV mutagenesis in the lac promoter of M131ac hybrid phage DNA. Nature 297, 596–598.PubMedCrossRefGoogle Scholar
  72. Lindahl, T. (1982). DNA repair enzymes. Ann. Rev. Biochem. 51, 61–87.PubMedCrossRefGoogle Scholar
  73. Lindahl, T., Demple, B., and Robins, P. (1982). Suicide inactivation of the E. coli 06methylguanine-DNA methyl transferase. EMBO J. 1, 1359–1363.PubMedGoogle Scholar
  74. Loeb, L. A., James, E. A., Waltersdorph, A. M., and Klebanoff, S. J. (1988). Mutagenesis by the autoxidation of iron with isolated DNA. Proc. Natl. Acad. Sci. USA 85, 3918–3922.PubMedCrossRefGoogle Scholar
  75. Loeb, L. A., and Kunkel, T. A. (1982). Fidelity of DNA synthesis. Ann. Rev. Biochem. 52, 429–457.CrossRefGoogle Scholar
  76. Loeb, L. A., and Reyland, M. E. (1987). Fidelity of DNA synthesis. In Nucleic Acids and Molecular Biology ( F. Eckstein and D. M. J. Lilley, Ed.), pp. 157–173. Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  77. Loechler, E. L., Green, C. L., and Essigmann, J. M. (1984). In vivo mutagenesis by 06 methylguanine built into a unique site in a viral genome. Proc. Nati. Acad. Sci. USA 81, 6271–6275.CrossRefGoogle Scholar
  78. Loveless, A. (1969). Possible relevance of 0–6 alkylation of deoxyguanosine to the mutagenicity and carcinogenicitity of nitrosoamines and nitrosamides. Nature 223, 206–207.PubMedCrossRefGoogle Scholar
  79. Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982). Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratories, Cold Spring Harbor.Google Scholar
  80. Maus, K. L., McIntosh, E. M., and Haynes, R. H. (1984). Defective dCNP deaminase confers a mutator phenotype on Saccharomyces cerevisiae. Environ. Mutag. 6, 415.Google Scholar
  81. Mazur, M., and Glickman, B. W. (1988). Sequence specificity of mutations induced by benzo[a]pyrene-7.8-dio1–9,10-epoxide at endogenous aprt gene in CHO cells. Somatic Cell Molec. Gen. 14, 393–400.CrossRefGoogle Scholar
  82. McKenna, P. G., and Hickey, I. (1981). UV sensitivity in thymidine kinase deficient mouse erythroleukemia cells. Cell Biol. Int. Rep. 5, 555–561.CrossRefGoogle Scholar
  83. McKenna, P. G., and Yasseen, A. A. (1982). Increased sensitivity to cell killing and mutagenesis in thymidine kinase-deficient subclones of a Friend murine leukemia cell line. Genet. Res. 40, 207–212.PubMedCrossRefGoogle Scholar
  84. McKenna, P. G., Yasseen, A. A., and McKelvey, V. J. (1985). Evidence for direct involvement of thymidine kinase in excision repair processes in mouse cell lines. Somat. Cell Mol. Genet. 11, 239–246.CrossRefGoogle Scholar
  85. Meuth, M. (1983). Deoxycytidine kinase-deficient mutants of Chinese hamster ovary cells are hypersensitive to DNA alkylating agents. Mutation Res. 110, 383–391.PubMedCrossRefGoogle Scholar
  86. Meuth, M. (1989). The molecular basis of mutations induced by deoxyribonucleoside triphosphate pool imbalances in mammalian cells. Exp. Cell. Res. 181, 305–316.PubMedCrossRefGoogle Scholar
  87. Meuth, M., and Green, H. (1974). Induction of a deoxycytidineless state in cultured mammalian cells by bromodeoxyuridine. Cell 2, 109–112.PubMedCrossRefGoogle Scholar
  88. Mhaskar, D. N., and Goodman, M. F. (1984). On the molecular basis of transition mutations. Frequency of forming 2-aminopurine-cytosine base mispairs in the G C → A.T mutational pathway by T4 DNA polymerase in vitro. J. Biol. Chem. 259, 11713–11717.PubMedGoogle Scholar
  89. Mildvan, A. S., and Loeb, L. A. (1979). Role of metal ions in the mechanisms of DNA and RNA polymerases. Crit. Rev. Biochem. 6, 219–244.CrossRefGoogle Scholar
  90. Miller, E. C. (1951). Studies on the formation of protein-bound derivatives of 3,4-benzpyrene in the epidermal fraction of mouse skin. Cancer Res. 11, 100–108.PubMedGoogle Scholar
  91. Miller, E. C., and Miller, J. A. (1974). Biochemical mechanisms of chemical carcinogenesis. In The Molecular Biology of Cancer ( H. Busch, Ed.), pp. 377–402. Academic Press, New York.Google Scholar
  92. Miller, E. C., and Miller, J. A. (1981). Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer 47, 2327–2345.PubMedCrossRefGoogle Scholar
  93. Miller, J. H. (1983). Mutational specificity in bacteria. Ann. Rev. Genet. 17, 215–238.PubMedCrossRefGoogle Scholar
  94. Miyaki, M., Suziki, K., Aihara, M., and Ono, T. (1983). Misincorporation in DNA synthesis after modification of template or polymerase by MNNG, MMS and UV radiation. Mutation Res. 107, 203–218.PubMedCrossRefGoogle Scholar
  95. Moore, P. D., Rabkin, S. D., Osborn, A. L., King, C. M., and Strauss, B. S. (1982). Effect of acetylated and deacetylated 2-aminofluorene adducts on in vitro DNA synthesis. Proc. Natl. Acad. Sci. USA 79, 7166–7170.PubMedCrossRefGoogle Scholar
  96. Newman, C. N., and Miller, J. H. (1983a). Kinetics of UV-induced changes in deoxynucleoside triphosphate pools in Chinese hamster ovary cells and their effect on measurements of DNA synthesis. Biochem. Biophys. Res. Commun. 116, 1064–1069.PubMedCrossRefGoogle Scholar
  97. Newman, C. N., and Miller, J. H. (1983b). Mutagen-induced changes in cellular deoxycytidine triphosphate and thymidine triphosphate in Chinese hamster cells. Biochem. Biophys. Res. Commun. 114, 34–40.PubMedCrossRefGoogle Scholar
  98. Newman, C. N., and Miller, J. H. (1985). Mechanism of UV-induced deoxynucleoside triphosphate pool imbalance in CHO-Kl cells. Mutation Res. 145, 95–101.PubMedGoogle Scholar
  99. Norman, J. O., Joe, C. O., and Busbee, D. L. (1986). Inhibition of DNA polymerase activity by methyl methanesulfonate. Mutation Res. 165, 71–79.PubMedGoogle Scholar
  100. Önfelt, A., and Jenssen, D. (1982). Enhanced mutagenic response of MNU by post-treatment with methylmercury, caffeine or thymidine in V79 Chinese hamster cells. Mutation Res. 106, 297–303.PubMedCrossRefGoogle Scholar
  101. Park, S. D., Choi, K. H., Hong, S. W., and Cleaver, J. E. (1981). Inhibition of excision-repair of ultraviolet damage in human cells by exposure to methyl methanesulfonate. Mutation Res. 82, 365–371.PubMedCrossRefGoogle Scholar
  102. Peterson, A. R., Dananberg, P. V., Ibric, L. L. V., and Peterson, H. (1985). Deoxyribonucleoside-induced selective modulation of cytotoxicity and mutagenesis. In Genetic Consequences of Nucleotide Pool Imbalance ( F. J. de Serres, Ed.), pp. 313–334. Plenum Press, New York.CrossRefGoogle Scholar
  103. Peterson, A. R., Peterson, H., and Danenberg, P. V. (1983). Induction of mutations by 5-fluorodeoxyuridine: a mechanism of self-potentiated drug resistance? Biochem. Biophys. Res. Commun. 110, 573–577.PubMedCrossRefGoogle Scholar
  104. Phear, G., Nalbantoglu, J., and Meuth, M. (1987). Next-nucleotide effects in mutations driven by DNA precursor pool imbalances at the aprt locus of Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 84, 4450–4454.CrossRefGoogle Scholar
  105. Prakash, L., Hinkle, D., and Prakash, S. (1978). Decreased UV mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae. Mol. Gen. Genet. 172, 249–258.CrossRefGoogle Scholar
  106. Preston, B. D., and Loeb, L. A. (1988). Enzymatic synthesis of site-specifically modified DNA. Mutation Res. 200, 21–35.PubMedCrossRefGoogle Scholar
  107. Preston, B. D., Poiesz, B. J., and Loeb, L. A. (1988a). Fidelity of HIV-1 reverse transcriptase. Science 242, 1168–1171.PubMedCrossRefGoogle Scholar
  108. Preston, B. D., Singer, B., and Loeb, L. A. (1986). Mutagenic potential of 04- methylthymine in vivo determined by an enzymatic approach to site-specific mutagenesis. Proc. Natl. Acad. Sci. USA 83, 8501–8505.PubMedCrossRefGoogle Scholar
  109. Preston, B. D., Singer, B., and Loeb, L. A. (1987). Comparison of the relative mutagenecities of 0-alkylthymines site-specifically incorporated into 4)X174 DNA. J. Biol. Chem. 262, 13821–13827.PubMedGoogle Scholar
  110. Preston, B. D., Wu, D., Reid, T. M., King, C. M., and Loeb, L. A. (1988b). Site-specific incorporation of 2-aminofluorene (AF)- and N-acety1–2-aminofluorene (AAF)- deoxyguanosine triphosphate adducts by DNA polymerases. J. Cell. Biochem. 12A, 348.Google Scholar
  111. Preston, B. D., Zakour, R. A., Singer, B., and Loeb, L. A. (1988c). Fidelity of base selection by DNA polymerases: Studies on site-specific incorporation of base analogues. In DNA Replication and Mutagenesis ( R. E. Moses, and W. C. Summers, Eds.), pp. 196–207. American Society of Microbiology, Washington, D.C.Google Scholar
  112. Protic-Sabljic, M., Tuteja, N., Munson, P. J., Hauser, J., Kraimer, K. H., and Dixon, K. (1986). UV light-induced cyclobutane pyrimidine dimers are mutagenic in mammalian cells. Molec. Cell. Biol. 6, 3349–3356.PubMedGoogle Scholar
  113. Radman, M., and Wagner, R. (1986). Mismatch repair in Escherichia coli. Ann. Rev. Genet. 20, 523–538.PubMedCrossRefGoogle Scholar
  114. Randazzo, R., Di Leonardo, A., Bonatti, S., and Abbondandolo, A. (1987). Modulation of induced reversion frequency by nucleotide pool imbalance as a tool for mutant characterization. Environ. Mol. Mutagen. 10, 17–26.PubMedCrossRefGoogle Scholar
  115. Reichard, P. (1988). Interactions between deoxyribonucleotide and DNA synthesis. Ann. Rev. Biochem. 57, 349–374.PubMedCrossRefGoogle Scholar
  116. Roberts, J. D., and Kunkel, T. A. (1986). Mutational specificity of animal cell DNA polymerases. Environ. Mutagen. 8, 769–789.PubMedCrossRefGoogle Scholar
  117. Roguska, M. A., and Gudas, L. J. (1984). Mutator phenotype in a mutant of S49 mouse T-lymphoma cells with abnormal sensitivity to thymidine. J. Biol. Chem. 259, 3782–3790.PubMedGoogle Scholar
  118. Saffhill, R. (1974). The effect of ionising radiation and chemical methylation upon the activity and accuracy of E. coli DNA polymerase I. Biochem. Biophys. Res. Commun. 61, 802–808.PubMedCrossRefGoogle Scholar
  119. Salazar, I., Tarrago-Litvak, L., Litvak, S., and Gil, L. (1985). Effect of benzo(a)pyrene on DNA synthesis and DNA polymerase activity of rat liver nuclei. Biochem. Pharmacol. 34, 755–762.PubMedCrossRefGoogle Scholar
  120. Sargent, R. G., and Mathews, C. K. (1987). Imbalanced deoxyribonucleoside triphosphate pools and spontaneous mutation rates determined during dCMP deaminase-defective bacteriophage T4 infections. J. Biol. Chem. 262, 5546–5553.PubMedGoogle Scholar
  121. Schaaper, R. M. (1988). Mechanisms of mutagenesis in the Escherichia coli mutator mutD5: Role of DNA mismatch repair. Proc. Nati. Acad. Sci. USA 85, 8126–8130.CrossRefGoogle Scholar
  122. Schaaper, R. M., and Dunn, R. L. (1987). Spectra of spontaneous mutations in Escheichia coli strains defective in mismatch correction: The nature of in vivo DNA replication errors. Proc. Natl. Acad. Sci. USA 84, 6220–6224.PubMedCrossRefGoogle Scholar
  123. Sedwick, W. D., Brown, O. E., and Glickman, B. W. (1986). Deoxyuridine misincorporation causes site-specific mutational lesions in the lact gene of Escherichia coli. Mutation Res. 162, 7–20.Google Scholar
  124. Seidman, M. M., Dixon, D., Razzaque, A., Zagursky, R. J., and Berman, M. L. (1985). A shuttle vector plasmid for studying carcinogen-induced point mutations in mammalian cells. Gene 38, 233–237.PubMedCrossRefGoogle Scholar
  125. Shewach, D. S., Chern, J.-W., Pillote, K. E., Townsend, L. B., and Dadonna, P. E. (1986). Potentiation of 2’-deoxyguanosine cytotoxicity by a novel inhibitor of purine nucleoside phosphorylase, 8-amino-9-benzylguanine. Cancer Res. 46, 519–523.PubMedGoogle Scholar
  126. Singer, B., and Grunberger, D. (1983). Molecular Biology of Mutagens and Carcinogens. Plenum Press, New York.CrossRefGoogle Scholar
  127. Singer, B., Spengler, S. J., Chavez, F., Sagi, J., Ku’smierek, J. T., Preston, B. D., and Loeb, L. A. (1987). O-Alkyl deoxythymidines are recognized by DNA polymerase I as deoxythymidine or deoxycytidine. In N-Nltroso Compounds: Occurrence, Biological Effects and Relevance to Human Cancer ( J. K. O’Neill et al., Eds.), pp. 37–41. Oxford University Press, Oxford.Google Scholar
  128. Sirover, M. A., Dube, D. K., and Loeb, L. A. (1979). On the fidelity of DNA replication. Metal activation of Escherichia coli DNA polymerase I. J. Biol. Chem. 254, 107–111.PubMedGoogle Scholar
  129. Sirover, M. A., and Loeb, L. A. (1976a). Infidelity of DNA synthesis in vitro: screening for potential metal mutagens or carcinogens. Science 194, 1434–1436.PubMedCrossRefGoogle Scholar
  130. Sirover, M. A., and Loeb, L. A. (1976b). Metal activation of DNA synthesis. Biochem. Biophys. Res. Commun. 70, 812–817.CrossRefGoogle Scholar
  131. Sirover, M. A., and Loeb, L. A. (1976c). Metal-induced infidelity during DNA synthesis. Proc. Nati. Acad. Sci. USA 73, 2331–2335.CrossRefGoogle Scholar
  132. Snow, E. T., and Mitra, S. (1987). Do carcinogen-modified deoxynucleotide precursors contribute to cellular mutagenesis? Cancer Investigation 5, 119–125.PubMedCrossRefGoogle Scholar
  133. Snow, E. T., and Mitra, S. (1988). Role of carcinogen-modified deoxynucleotide precursors in mutagenesis. Mutation Res. 200, 157–164.PubMedCrossRefGoogle Scholar
  134. Suzuki, K., Miyaki, M., Ono, T., Mori, H., Moriya, H., and Kato, T. (1983). UV-induced imbalance of the deoxynucleoside triphosphate pool in E. coli. Mutation Res. 122, 293–298.PubMedCrossRefGoogle Scholar
  135. Tabor, S., and Richardson, C. C. (1987). Selective oxidation of the exonuclease domain of bacteriophage T7 DNA polymerase. J. Biol. Chem. 262, 15330–15333.PubMedGoogle Scholar
  136. Tabor, S., and Richardson, C. C. (1989). Selective inactivation of the exonuclease activity of bacteriophage T7 DNA polymerase by in vitro mutagenesis. J. Biol. Chem. 264, 6447–6458.PubMedGoogle Scholar
  137. Topal, M. D., and Baker, M. S. (1982). DNA precursor pool: a significant target for N-methyl-N-nitrosourea in C3H/10T1/2 clone 8 cells. Proc. Natl. Acad. Sci. USA 79, 2211–2215.PubMedCrossRefGoogle Scholar
  138. Trudel, M., Van Genechten, T., and Meuth, M. (1984). Biochemical characterization of the hamster thy mutator gene and its revertants. J. Biol. Chem. 259, 2355–2359.PubMedGoogle Scholar
  139. Vrieling, H., Van Rooijen, M. L., Groen, N. A., Zdzienicka, M. Z., Simons, J. W. I. M., Lohman, P. H. M., and van Zeeland, A. A. (1989). DNA strand specificity for UV-induced mutations in mammalian cells. Mot. Cell. Biol. 9, 1277–1283.Google Scholar
  140. Wabl, M., Burrows, P. D., von Gabain, A., and Steinberg, C. (1985). Hypermutation at the immunoglobulin heavy chain locus in a pre-B-cell line. Proc. Natl. Acad. Sci. USA 82, 479–482.PubMedCrossRefGoogle Scholar
  141. Wahl, A. F., Geis, A. M., Spain, B. H., Wong, S. W., Korn, D., and Wang, T. S.-F. (1988). Gene expression of human DNA polymerase a during cell proliferation and the cell cycle. Mol. Cell. Biol. 8, 5016–5025.PubMedGoogle Scholar
  142. Walker, G. C. (1984). Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48, 60–93.PubMedGoogle Scholar
  143. Weinberg, G., Ullman, B., and Martin Jr., D. W. (1981). Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools. Proc. Natl. Acad. Sci. USA 78, 2447–2451.PubMedCrossRefGoogle Scholar
  144. Weinberg, G. L., Ullman, B., Wright, C. M., and Martin Jr., D. W. (1985). The effects of exogenous thymidine on endogenous deoxynucleotides and mutagenesis in mammalian cells. Somat. Cell. Mol. Genet. 11, 413–419.PubMedCrossRefGoogle Scholar
  145. Williams, W. E., and Drake, J. W. (1977). Mutator mutations in bacteriophage T4 gene 42 (dHMC hydroxymethylase). Genetics 86, 501–511.PubMedGoogle Scholar
  146. Witkin, E. M. (1976). Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol. Rev. 40, 869–907.Google Scholar
  147. Wojciechowski, M. F., and Meehan, T. (1984). Inhibition of DNA methyltransferases in vitro by benzo(a)pyrene diol epoxide-modified substrates. J. Biol. Chem. 259, 9711–9716.PubMedGoogle Scholar
  148. Wong, S. W., Wahl, A. F., Yuan, P.-M., Arai, N., Pearson, B. E., Arai, K.-I., Korn, D., Hunkapiller, M. W., and Wang, T. S.-F. (1988). Human DNA polymerase a gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J. 7, 37–47.PubMedGoogle Scholar
  149. Wurtz, E. A., Sears, B. B., Rabert, D. K., Shepard, H. S., Gillham, N. W., and Boynton, J. E. (1979). A specific increase in chloroplast gene mutations following growth of Chlamydomonas in 5-flurodeoxyuridine. Mol. Gen. Genet. 170, 235–242.PubMedCrossRefGoogle Scholar
  150. Yang, J.-L., Maher, V. M., and McCormick, J. J. (1987). Kinds of mutations formed when a shuttle vector containing adducts of (±)-70,8a-dihydroxy-9a,10a-epoxy-7,8,9,10-tetrahydrobenz[alpyrene replicates in human cells. Proc. natl. Acad. Sci. USA 84, 3787–3791.PubMedCrossRefGoogle Scholar
  151. Yang, J. L., Maher, V. M., and McClormick, J. J. (1988). Kinds and spectrum of mutations induced by 1-nitrosopyrene adducts during plasmid replication in human cells. Molec. Cell. Biol. 8, 3364–3372.PubMedGoogle Scholar
  152. Yarosh, D. B., Hurst-Calderone, S., Babich, M. A., and Day, R. S. I. (1986). Inactivation of 06-methylguanine-DNA methyltransferase and sensitization of human tumor cells to killing by chloroethylnitrosourea by 06-methylguanine as a free base. Cancer Res. 46, 1663–1668.PubMedGoogle Scholar
  153. Zakour, R. A., and Loeb, L. A. (1982). Site-specific mutagenesis by error-directed DNA synthesis. Nature 295, 708–710.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Bradley D. Preston
    • 1
  • Rupa Doshi
    • 1
  1. 1.Department of Chemical BiologyRutgers University College of PharmacyPiscatawayUSA

Personalised recommendations