Formation of Reactive Intermediates by Phase II Enzymes: Glutathione-Dependent Bioactivation Reactions

  • Spyridon Vamvakas
  • M. W. Anders
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 283)


Xenobiotic metabolism serves several important functions in the body: The metabolism of drugs to pharmacologically inactive metabolites is the major mechanism for the termination of drug action. Metabolism may quantitatively alter drug action and may also convert pharmacologically inactive prodrugs to their pharmacologically active metabolites. In addition, metabolism of xenobiotics to polar, readily excretable metabolites is a major detoxication mechanism. Although the metabolism of drugs and chemicals is usually beneficial, it is now well known that the toxicity of most organic chemicals is associated with their enzymatic conversion to toxic metabolites, a process termed bioactivation (Anders, 1985).


Hydrogen Cyanide Glutathione Conjugate Mercapturic Acid Buthionine Sulfoximine Acyl Glucuronide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, A.E. and Anders, M.W. (1978). Metabolism of dihalomethanes to formal-dehyde and inorganic halide. II. Studies on the mechanism of the reaction. Biochem. Pharmacol. 27, 2021–2025.CrossRefPubMedGoogle Scholar
  2. Anders, M.W., ed. (1985). Bioactivation of Foreign Compounds,Academic Press, Orlando.Google Scholar
  3. Anders, M.W. (1988). Glutathione-dependent toxicity: Biosynthesis and bioactivation of cytotoxic S-conjugates. ISI Atlas of Science: Pharmacology 2, 99–104.Google Scholar
  4. Anders, M.W., Lash, L.H., and Elfarra, A.A. (1986). Nephrotoxic amino acid and glutathione S-conjugates: Formation and renal activation. Adv. Exp. Med. Biol. 197, 443–455.CrossRefGoogle Scholar
  5. Anders, M.W., Lash, L.H., Dekant, W., Elfarra, A.A., and Dohn, D.R. (1988). Biosynthesis and biotransformation of glutathione S-conjugates to toxic metabolites. CRC Crit. Rev. Toxicol. 18, 311–341.CrossRefGoogle Scholar
  6. Andersen, M.E., Clewell, H.J., III, Gargas, M.L., Smith, F.A., and Reitz, R.H. (1987). Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Toxicol. Appl. Pharmacol. 87, 185–205.Google Scholar
  7. Banerjee, S., Van Duuren, B.L., and Oruambo, F.J. (1980). Microsome mediated covalent binding of 1,2-dichloroethane to lung microsomal proteins and salmon sperm DNA. Cancer Res. 40, 2170–2173.PubMedGoogle Scholar
  8. Bruggeman, I.M., Temmink, J.H.M., and van Bladeren, P.J. (1986). Glutathione-and cysteine-mediated cytotoxicity of ally’ and benzyl isothiocyanate. Toxicol. Appl. Pharmacol. 83, 349–359.CrossRefPubMedGoogle Scholar
  9. Dekant, W., Metzler, M., and Henschler, D. (1986a). Identification of S-1,2,2-tri-chlorovinyl-N-acetylcysteine as a urinary metabolite of tetrachloroethylene: Bioactivation through glutathione conjugation as a possible explanation of its nephrocarcinogenicity. J. Biochem. Toxicol. 1, 57–72.CrossRefPubMedGoogle Scholar
  10. Dekant, W., Metzler, M., and Henschler, D. (1986b). Identification of S-1,2- dichlorovinyl-N-acetyl-cysteine as a urinary metabolite of trichloroethylene: A possible explanation for its nephrocarcinogenicity in male rats. Biochem. Pharmacol. 35, 2455–2458.CrossRefPubMedGoogle Scholar
  11. Dekant, W., Martens, G., Vamvakas, S., Metzler, M., and Henschler, D. (1987a). Bioactivation of tetrachloroethylene: Role of glutathione S-transferase-catalyzed conjugation versus cytochrome P-450-dependent alkylation. Drug Metab. Dispos. 15, 702–709.PubMedGoogle Scholar
  12. Dekant, W., Lash, L.H., and Anders, M.W. (1987b). Bioactivation mechanism of the cytotoxic and nephrotoxic S-conjugate S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine. Proc. Natl. Acad. Sci. USA 84, 7443–7447.CrossRefGoogle Scholar
  13. Dekant, W., Lash, L.H., and Anders, M.W. (1988a). Fate of glutathione conjugates and bioactivation of cysteine S- conjugates by cysteine conjugate 13-lyase. In Glutathione Conjugation: Its Mechanism and Biological Significance ( H. Sies and B. Ketterer, Eds.), pp. 415–447. Academic Press, Orlando.Google Scholar
  14. Dekant, W., Berthold, K., Vamvakas, S., Henschler, D., and Anders, M.W. (1988b). Thioacylating intermediates as metabolites of S-(1,2-dichloroviny1)-L-cysteine and S-(1,2,2-trichloroviny1)-L-cysteine formed by cysteine conjugate 13-lyase. Chem. Res. Toxicol. 1, 175–178.CrossRefPubMedGoogle Scholar
  15. Dekant, W., Berthold, K., Vamvakas, S., and Henschler, D. (1988c). Thioacylating agents as ultimate intermediates in the 13-lyase catalyzed metabolism of S-(pentachlorobutadieny1)-L- cysteine. Chem.-Biol. /nteract. 67, 139–148.Google Scholar
  16. Dekant, W., Vamvakas, S., and Anders, M.W. (1989). Bioactivation of nephrotoxic haloalkenes by glutathione conjugation: Formation of toxic and mutagenic intermediates by cysteine conjugate 13-lyase. Drug Metab. Rev. 20, 43–83.CrossRefPubMedGoogle Scholar
  17. Dohn, D.R., and Anders, M.W. (1982). The enzymatic reaction of chlorotrifluoro-ethylene with glutathione. Biochem. Biophys. Res. Commun. 109, 1339–1345.CrossRefPubMedGoogle Scholar
  18. Dohn, D.R., Leininger, J.R., Lash, L.H., Quebbemann, A.J., and Anders, M.W. (1985). Nephrotoxicity of S-(2-chloro-1,1,2-trifluoroethyl)glutathione and S-(2-chloro-1,1,2- trifluoroethyl)-L-cysteine, the glutathione and cysteine conjugates of chlorotrifluoroethene. J. Pharmacol. Exp. Ther. 235, 851–857.Google Scholar
  19. Ehlhardt, W.J., and Goldman, P. (1989). Thiol-mediated incorporation of radiolabel from 1414]-methy1–4-pheny1–5-nitroimidazole into DNA. Biochem. Pharmacol. 38, 1175–1180.CrossRefPubMedGoogle Scholar
  20. Elfarra, A.A., and Anders, M.W. (1984). Renal processing of glutathione conjugates: Role in nephrotoxicity. Biochem. Pharmacol. 33, 3729–3732.CrossRefPubMedGoogle Scholar
  21. Elfarra, A.A., Baggs, R.B., and Anders M.W. (1985). Structure-nephrotoxicity relationships of S-(2-chlororethyl)-DL-cysteine and analogs: Role for an episulfonium ion. J. Pharmacol. Exp. Therap. 233, 2, 512–516.Google Scholar
  22. Elfarra, A.A., Jakobson, I., and Anders, M.W. (1986). Mechanism of S-(1,2-dichloro-vinyl)glutathione-induced nephrotoxicity. Biochem. Pharmacol. 35, 283–288.CrossRefPubMedGoogle Scholar
  23. Faed, E. M. (1984). Properties of aryl glucuronides: Implications for studies of the pharmacokinetics and metabolism of acidic drugs. Drug Metab. Rev. 15, 1213 1249.Google Scholar
  24. Green, T., and Odum, J. (1985). Structure/activity studies of the nephrotoxic and mutagenic action of cysteine conjugates of. chloro-and fluoroalkenes. Chem. Biol. Interact. 54, 15–31.CrossRefPubMedGoogle Scholar
  25. Guengerich, P.P., Crawford, W.M. Jr., Domoraddzki, J.Y., Macdonald, T.L., and Watanabe, P.G. (1980). In vitro activation of 1,2-dichloroethane by microsomal and cytosolic enzymes. Toxicol. Appl. Pharmacol. 55, 303–317.CrossRefPubMedGoogle Scholar
  26. Guengerich, F.P. and Liebler, D.C. (1985). Enzymatic activation of chemicals to toxic metabolites. CRC Crit. Rev. Toxicol. 14, 259–307.CrossRefGoogle Scholar
  27. Guengerich, F.P., Peterson, L.A., Cmarik, J.L., Koga, N., and Inskeep, P.B. (1987). Activation of dihaloalkanes by glutathione conjugation and formation of DNA adducts. Environ. Health. Perspect. 76, 15–18.CrossRefPubMedGoogle Scholar
  28. Hanna, P.E. and Banks, R.B. (1985). Arylhydroxylamines and arylhydroxamic acids: Conjugation reactions. In Bioactivation of Foreign Compounds ( M.W. Anders, Ed.), pp. 375–402. Academic Press, Orlando.Google Scholar
  29. Hill, D.L., Shih, T.-W., Johnston, T.P., and Struck, R.F. (1978). Macromolecular binding and metabolism of the carcinogen 1,2-dibromoethane. Cancer Res. 38, 2438–2442.Google Scholar
  30. Ishmael, J., and Lock, E.A. (1986). Nephrotoxicity of hexachlorobutadiene and its glutathione-derived conjugates. Toxicol. Pathos. 14, 258–262.CrossRefGoogle Scholar
  31. Inskeep, P.B., Koga, N., Cmarik, J.L., and Guengerich, F.P. (1986). Covalent binding of 1,2-dihaloalkanes to DNA and stability of the major DNA adduct S-[2-(N7guanyl)ethyl]glutathione. Cancer Res. 46, 2839–2844.PubMedGoogle Scholar
  32. Jaffe, D.R., Hassall, C.D., Gandolfi, A.J., and Brendel, K. (1985). Production of DNA single strand breaks in rabbit renal tissue after exposure to 1,2dichlorovinylcysteine. Toxicology 35, 25–33.CrossRefPubMedGoogle Scholar
  33. Jones, A.R., Fakhouri, G., and Gadiel, P. (1979). The metabolism of the soil fumigant of 1,2-dibromo-3-chloropropane in the rat. Experentia 35, 1432–1434.CrossRefGoogle Scholar
  34. Jones, T.W., Gerdes, R.G., Ormstad, K., and Orrenius, S. (1985). The formation of both a mono-and bis-substituted glutathione conjugate of hexachlorobutadiene by isolated hepatocytes and following in vivo administration to the rat. Chem. Biol. Interact. 56, 251–267.CrossRefGoogle Scholar
  35. Jones, T.W., Wallin, A., Thor, H., Gerdes, R.G., Ormstad, K., and Orrenius, S. (1986). The mechanism of pentachlorobutadienyl-glutathione nephrotoxicity studied with isolated rat renal epithelial cells. Arch. Biochem. Biophys. 251, 504–513.CrossRefGoogle Scholar
  36. Kanhai, W., Dekant, W., and Henschler, D. (1989). Metabolism of the nephrotoxin dichloroacetylene by glutathione conjugation. Chem. Res. Toxicol. 2, 51–561.CrossRefPubMedGoogle Scholar
  37. Kociba, R.J., Keyes, D.G., Jersey, G.C., Ballard, J.J., Dittenber, D.A., Quast, J.F., Wade, C.E., Humiston, C.G., and Schwetz, B.A. (1977). Results of a two year chronic toxicity study with hexachlorobutadiene in rats. Am. Ind. Hyg. Assoc. J. 38, 589–602.CrossRefPubMedGoogle Scholar
  38. Lig, M., Omichinski, J.G., Soderlund, E.J., Brunborg, G., Holme, J.A., Dahl, E.J., Nelson, S.D., and Dybing, E. (1989). Role of P-450 activity and glutathione levels in 1,2-dibromo-3-chloropropane tissue distribution, renal necrosis and in vivo DNA damage. Toxicology 56, 273–288.CrossRefGoogle Scholar
  39. Lash, L. H., and Anders, M. W. (1986). Cytotoxicity of S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine in isolated rat kidney cells. J. Biol. Chem. 261, 13076–13081.PubMedGoogle Scholar
  40. Lash, L.H., and Anders, M.W. (1987). Mechanism of S-(1,2-dichloroviny1)-L-cysteineand S-(1,2-dichlorovinyl)- L-homocysteine-induced renal mitochondrial toxicity. Mol. Pharmacol. 32, 549–556.PubMedGoogle Scholar
  41. Lau, S.S., Monks, T.J., and Gillette, J.R. (1984). Identification of 2-bromohydro-quinone as a metabolite of bromobenzene and o-bromophenol: Implications for bromobenzene-induced nephrotoxicity. J. Pharmacol. Exp. Ther. 230, 360–366.PubMedGoogle Scholar
  42. Lau, S.S., Hill, B.A., Highet, R.J., and Monks, T.J. (1988). Sequential oxidation and glutathione addition to 1,4-benzoquinone: Correlation of toxicity with increased glutathione substitution. Mol. Pharmacol. 34, 829–836.PubMedGoogle Scholar
  43. Lawley, P.D., and Thatcher, C.J. (1970). Methylation of deoxyribonucleic acid in cultured mammalian cells by N-methyl- N’-nitro-N-nitrosoguanidine. Biochem. J. 116, 693–707.PubMedGoogle Scholar
  44. Lock, E.A., and Ishmael, J. (1979). The acute toxic effects of hexachloro-1:3- butadiene on the rat kidney. Arch. Toxicol. 43, 47–57.Google Scholar
  45. Lock, E.A., and Ishmael, J. (1985). Effect of the organic acid transport inhibitor probenecid on renal cortical uptake and proximal tubular toxicity of hexachloro-1,3-butadiene and its conjugates. Toxicol. Appl. Pharmacol. 81, 32–42.CrossRefPubMedGoogle Scholar
  46. Miller, G.M., Brabec, M.J., and Kulkarni, A.P. (1986). Mutagen activation of 1,2- dibromo-3-chloropropane by cytosolic glutathione S-transferases and microsomal enzymes. J. Toxicol. Environ. Health. 19, 503–518.CrossRefPubMedGoogle Scholar
  47. Monks, T.J., Lau, S.S., Highet, R.J., and Gillette, J.R. (1985). Glutathione conjugates of 2-bromohydroquinone are nephrotoxic. Drug Metab. Dispos. 13, 553–559.PubMedGoogle Scholar
  48. Monks, T.J., Highet, R.J., and Lau, S.S. (1988). 2-Bromo- (diglutathion-S-yl)hydro-quinone nephrotoxicity: Physiological, biochemical, and electrochemical determinants. Mol. Phamacol. 34, 492–500.Google Scholar
  49. Nachtomi, E. (1970). The metabolism of ethylene dibromide in the rat. The enzymic reaction with glutathione in vitro and in vivo. Biochem. Pharmacol. 19, 2853–2860.CrossRefGoogle Scholar
  50. Nash, J. A., King, L. H., Lock, E. A., and Green, T. (1984). The metabolism and disposition of hexachloro-1:3-butadiene in the rat and its relevance to nephrotoxicity. Toxicol. Appl. Pharmacol. 73, 124–137.CrossRefPubMedGoogle Scholar
  51. Odum, J., and Green, T. (1984). The metabolism and nephrotoxicity of tetrafluoro-ethylene in the rat. Toxicol. Appl. Pharmacol. 76, 306–318.CrossRefPubMedGoogle Scholar
  52. Odum, J., and Green, T. (1987). Perchloroethylene metabolism by the glutathione conjugation pathway. Toxicologist 7, 269.Google Scholar
  53. Ohkawa, H. and Casida, J.E. (1971). Glutathione S-transferases liberate hydrogen cyanide from organic thiocyanates. Biochem. Pharmacol. 20, 1708–1711.Google Scholar
  54. Omichinski, J.G., Soderlund, E.J., Dybing, E., Pearson, P.G., and Nelson, S.D. (1988). Detection and mechanism of formation of the potent direct acting mutagen 2- bromoacrolein from 1,2- dibromo-3-chloropopane. Toxicol. Appl. Pharmacol. 92, 286–292.Google Scholar
  55. Potter, C.L., Gandolfi, A.J., Nagle, R., and Clayton, J.W. (1981). Effects of inhaled chlorotrifluoroethylene and hexafluoropropene on the rat kidney. Toxicol. Appl. Pharmacol. 59, 431–440.CrossRefPubMedGoogle Scholar
  56. Rannung, U., Sundvall, A., and Ramel, C. (1978). The mutagenic effect of 1,2- dichloroethane on Salmonella typhimurium. I. Activation through conjugation with glutathione in vitro. Chem.- Biol. Interact. 20, 1–16.CrossRefGoogle Scholar
  57. Reichert, D., and Schutz, S. (1986). Mercapturic acid formation is an activation and intermediary step in the metabolism of hexachlorobutadiene. Biochem. Pharmacol. 35, 1271–1275.CrossRefPubMedGoogle Scholar
  58. Reitz, R.H., Mendrala, A.L., and Guengerich, F.P. (1989). In vitro metabolism of methylene chloride in human and animal tissues: Use in physiologically based pharmacokinetic models. Toxicol. Appl. Pharmacol. 97, 230–246.Google Scholar
  59. Saito, K., Yamazoe, Y., Kamataki, T., and Kato, R. (1983). Activation and detoxication of N-hydroxy-Trp-P-2 by glutathione and glutathione transferases. Carcinogenesis 4, 1551–1557.CrossRefPubMedGoogle Scholar
  60. Schnellmann, R.G., Monks, T.J., Mandel, L.J., and Lau, S.S. (1989). 2-Bromohydro-quinone-induced toxicity to rabbit renal proximal tubules: The role of biotransformation, glutathione, and covalent binding. Toxicol. Appl. Pharmacol. 99, 19–27.Google Scholar
  61. Sipes, I.G., Wiersma, D.A., and Amstrong, D.J. (1986). The role of glutathione in the toxicity of xenobiotic compounds: metabolic activation of 1,2-dibromoethane by glutathione. Adv. Exp. Med. Biol. 197, 457–464.CrossRefGoogle Scholar
  62. Stevens, J., Hayden, P., and Taylor, G. (1986). The role of glutathione metabolism and cysteine conjugate 13-lyase in the mechanism of S-cysteine conjugate toxicity in LLC-PK1 cells. J. Biol. Chem. 261, 3325–3332.PubMedGoogle Scholar
  63. Temmink, J.H.M., Bruggeman, I.M., and van Bladeren, P.J. (1986). Cytomorphological changes in liver cells exposed to allyl and benzyl isothiocyanate and their cysteine and glutathione conjugates. Arch. Toxicol. 59, 103–110.Google Scholar
  64. Terracini, B., and Parker, V.H. (1965). A pathological study on the toxicity of Sdichlorovinyl-L-cysteine. Food Cosmet. Toxicol. 3, 67–74.CrossRefPubMedGoogle Scholar
  65. Vamvakas, S., Berthold, K., Dekant, W., and Henschler, D. (1988a). Bacterial cysteine conjugate ß-lyase and the metabolism of cysteine S-conjugates: Structural requirements for the cleavage of S-conjugates and the formation of reactive intermediates. Chem. Biol. Interact. 65, 59–71.CrossRefPubMedGoogle Scholar
  66. Vamvakas, S., Kordowitch, F.J., Dekant, W., Neudeeker, T., and Henschler, D. (1988b). Mutagenicity of hexachloro-1,3- butadiene and its S-conjugates in the Ames test: Role of activation by the mercapturic acid pathway in its nephrocarcinogencicity. Carcinogenesis 9, 907–210.Google Scholar
  67. Vamvakas, S., Dekant, W., and Henschler, D. (1988c). Genotoxicity of haloalkene and haloalkane glutathione S- conjugates in a cultured line of porcine kidney cells. Toxicol. In Vitro 3, 151–156.Google Scholar
  68. Vamvakas, S., Kremling, E., and Dekant, W. (1989a). Metabolic activation of the nephrotoxic haloalkane 1,1,2-trichloro-3,3,3-trifluoro-l-propene by glutathione conjugation. Biochem. Pharamcol. 38, 2297–2304.CrossRefGoogle Scholar
  69. Vamvakas, S., Köchling, A., and Dekant, W. (1989b). Cytotoxicity of cysteine S-conjugates: Structure activity relationships. Chem.-Biol. Interact. 71, 79–90.CrossRefPubMedGoogle Scholar
  70. Vamvakas, S., Hergenhof, M., Dekant, W., and Henschler, D. (1989c). Mutagenicity of tetrachloroethylene in the Ames-test–Metabolic activation by conjugation with glutathione. J. Biochem.-Toxicol. 4, 21–28.CrossRefPubMedGoogle Scholar
  71. Vamvakas, S., Dekant, W., and Henschler, D. (1989d). Genotoxicity of cysteine S-conjugates derived from halogenated alkenes and alkanes in a cultured line of porcine kidney cells (LLC-PK1). Mutat. Res. 222, 329–335.Google Scholar
  72. Vamvakas, S., Sharma, V.K., Sheu, S-S., and Anders, M.W. Perturbations of intracellular calcium distribution in kidney cells by nephrotoxic haloalkenyl eysteine S-conjugates studied with fluroescence digital imaging microscopy. (Submitted).Google Scholar
  73. van Bladeren, P.J., Breimer, D.D., van Huijgevoort, J.A.T.C.M., Vermeulen, N.P.E., and van der Gen, A. (1981). The metabolic formation of N-acetyl-S-2hydroxyethyl-L-eysteine from tetradeutero-1,2-dibromoethane. Relative importance of oxidation and glutathione conjugation in vivo. Biochem. Pharmacol. 30, 2499–2502.CrossRefGoogle Scholar
  74. Vroomen, L.H.M., Berghmans, M.C.J., Groten, J.P., Koemen, J.H., and van Bladeren, P.J. (1988). Reversible interaction of a reactive intermediate derived from furazolidone with glutathione and protein. Toxicol. Appt. Pharmacol_ 95, 53–60.CrossRefGoogle Scholar
  75. Webb. W.W., Elfarra, A.A., Webster, K.D., Thom, R.E., and Anders, M.W. (1987). Role for an episulfonium ion in S-(2-chloroethyl)-DL-cysteine-induced cytotoxicity and its reaction with glutathione. Biochemistry 26, 3017–3023.CrossRefGoogle Scholar
  76. Williams, R.T. (1959). Detoxication Mechanisms, 2d ed., pp. 734–740. Chapman and Hall, London.Google Scholar
  77. Wolf, C.R., Berry, P.N., Nash, J.A., Green, T., and Lock, E.A. (1984). The role of microsomal and cytosolic glutathione-S-transferases in the conjugation of hexachloro-1:3-butadiene and its possible relevance to toxicity. J. Pharmacol. Exp. Ther. 228, 202–208.PubMedGoogle Scholar
  78. Working, P.K., Smith-Oliver, T., White, R.D., and Butterworth, B.E. (1986). Induction of DNA repair in rat spermatocytes and hepatocytes by 1,2-dibromoethane: The role of glutathione conjugation. Carcinogenesis 7, 467–472.CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Spyridon Vamvakas
    • 1
  • M. W. Anders
    • 1
  1. 1.Department of PharmacologyUniversity of RochesterRochesterUSA

Personalised recommendations