Monitoring Human Exposure to Environmental Carcinogens

  • Regina M. Santella
  • Yu Jing Zhang
  • Tie Lan Young
  • Byung Mu Lee
  • Xiao Qing Lu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 283)


One of the long range goal of research in chemical carcinogenesis is the identification of individuals at increased risk of cancer development. Cancer is a multistep, multistage process in which many factors effect ultimate risk. The initiating event in the process of chemical carcinogenesis is the binding of the reactive electrophilic species of the carcinogen to nucleophilic sites in DNA. The extent of this reaction is influenced by a number of factors including metabolism to the active species or less toxic metabolites, detoxification of reactive intermediates and repair of adducts once formed. Thus, individuals with the same exposure may be at very different risk for cancer development because of differences in these processes due to genetic susceptibility. Suggestive evidence for this genetic susceptibility has come from epidemiologic studies demonstrating a higher proportion of individuals with a specific phenotype (e.g. poor metabolizers of debrisoquin or lacking specific glutathione transferase activity) among cancer cases than controls (Ayesh et al. 1984, Seidegard et al. 1986).


Adduct Level Protein Adduct Foundry Worker Thymine Glycol Coke Oven Worker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ayesh, R., Idle, J.R., Ritchie, J.C., Crothers, M.J., and Hetzel, M.R. (1984). Metabolic oxidation phenotypes as markers for susceptibility to lung cancer. Nature, 312, 169–170.CrossRefPubMedGoogle Scholar
  2. Baan, R.A., Lansbergen, M.J., Bruin, P.A.F., Willems, M.I., and Lohman, P.H.M. (1985). The Organ-specific induction of DNA adducts in 2- acetylaminofluorence-treated rats, studied by means of a sensitive immunochemical method. Mutation Res., 150, 23–32.CrossRefPubMedGoogle Scholar
  3. Ball, S.S., Quaranta, V., Shadravan, F., and Walford, R.L. (1987). An ELISA for for detection of DNA-bound carcinogen using a monoclonal antibody to to N-acetoxy-2-acetylaminofluorene-modified DNA. J. Immunol. Methods, 98, 195–200.CrossRefPubMedGoogle Scholar
  4. Bickers, D.R. (1981). The carcinogenicity and mutagenicity of therapeutic coal tar-A perspective. J. Invest. Derm., 77, 173–174.CrossRefPubMedGoogle Scholar
  5. Bryant, M.S., Skipper, P.L., and Tannenbaum, S.R. (1987). Hemoglobin adducts of 4- aminobiphenyl in smokers and nonsmokers. Cancer Res., 47, 602–608.PubMedGoogle Scholar
  6. Clonfero, E., Zordan, M., Venier, P., Paleologo, M., Levis, A.G., Cottica, D., Pozzoli, L., Jongeneelen, F.J., Bos, R.P., and Ansion, R.B.B. (1989). Biological monitoring of human exposure to coal tar. Int. Arch. Occup. Environ. Hlth., 61, 363–368.CrossRefGoogle Scholar
  7. Degan, P., Montesano, R., and Wild, C.P. (1988). Antibodies against 7-methyl-deoxyguanosine: Its detection in rat peripheral blood lymphocyte DNA and potential applications to molecular epidemiology. Cancer Res., 48, 5065–5070.PubMedGoogle Scholar
  8. Eberle, G., Barbin, A., Laib, R.J., Ciroussel, F., Thomale, J., Bartsch, H. and Rajewslcy, M.F. (1989). 1,N6-etheno-21-deoxyadenosine and 3, N4-etheno-2’- deoxycytidine detected by monoclonal antibodies in lung and liver DNA of of rats exposed to vinyl chloride. Carcinogenesis, 10, 209–212.Google Scholar
  9. Everson, R.B., Randerath, E., Santella, R.M., Cefalo, R.C., Avitts, T.A., and Randerath, K. (1986). Detection of smoking-related covalent DNA adducts in human placenta. Science, 231, 54–57.CrossRefPubMedGoogle Scholar
  10. Everson, R.B., Randerath, E., Santella, R.M., Avitts, T.A., Weinstein, I. B., and Randerath, K. (1988). Quantitative associations between DNA damage in human placenta and maternal smoking and birth weight. J. Natl. Cancer. Inst., 80, 567–576.CrossRefPubMedGoogle Scholar
  11. Farmer, P.B., Neumann, H.G., and Henschler, D. (1987). Estimation of exposure of man to substances reacting covalently with macromolecules. Arch. Toxicol., 60, 251–260.CrossRefPubMedGoogle Scholar
  12. Fichtinger-Schepman, A., Baan, R., Luiten-Schuite, A., VanDijk, M., and Lohman, P.H.M. (1985). Immunochemical quantitation of adducts induced in DNA by cis-diamminedichloroplatinum(II) and analysis of adduct related DNA-unwinding. Chem. Biol. Inter., 55, 275–288.CrossRefGoogle Scholar
  13. Foiles, P.G., Chung, F.L., and Hecht, S.S. (1986). Development of a monoclonal antibody based immunoassay for cyclic DNA adducts resulting from exposure to crotonaldehyde. Cancer Res., 47, 360–363.Google Scholar
  14. Gan, L.S., Skipper, P.L., Peng, X., Groopman, J.D., Chen, J., Wogan, G.N., and Tannenbaum, S.R. (1988). Serum albumim adducts in the molecular epidemiolgy of aflatoxin carcinogenesis: correlation with aflatoxin Blintake and urinary excretion of aflatoxin Ml. Carcinogenesis, 9, 1323–1325.CrossRefPubMedGoogle Scholar
  15. Guigues, M., and Leng, M. (1979). Reactivity of antibodies to guanosine modified by the carcinogen N-acetoxy-N-2-acetylaminofluorene. Nucleic Acid Res., 6, 733–744.CrossRefPubMedGoogle Scholar
  16. Gupta, R.C., and Earley, K. (1988). 32P-adduct assay: comparative recoveries of structurally diverse DNA adducts in the various enhancement procedures. Carcinognesis, 9, 1687–1693.Google Scholar
  17. Harris, C.C., Vahakangas, K., Newman, J.M., Trivers, G.E., Shamsuddin, A., Sinopoli, N., Mann, D.L., and Wright, W.E. (1985). Detection of benzo[a]pyrene diol epoxide-DNA adducts in peripheral blood lymphocytes and antibodies to the adducts in serum from coke oven workers. Proc. Natl. Acad. Sci. USA, 82, 6672–6676.CrossRefPubMedGoogle Scholar
  18. Haugen, A., Groopman, J.D., Hau, I.C., Goodrich, G.R., Wogan, G.W., and Harris, C.C. (1981). Monoclonal antibody to aflatoxin Bl-modified DNA detected by enzyme immunoassay. Proc. Natl. Acad. Sci. USA, 78, 4124–4127.CrossRefGoogle Scholar
  19. Hebert, E., Saint-Ruf, G., and Leng, M. (1985). Immunological tritration of 3-N-acetyl-hydroxyamino-4, 6-dimethyldipyrido(1,2-a:3’,2’- d)imidazole-rat liver DNA adducts. Carcinogenesis, 6, 937–939.CrossRefPubMedGoogle Scholar
  20. Hemminki, K., Twardowska-Saucha, K., Sroczynski, J.W., Grzybowka, E., Chorazy, M.,Putnam, K.L., Randerath, K., Phillips, D.H., Hewer, A., Santella, R.M., Young, T.L., and Perera, F.P. DNA adducts in humans environmentally exposed to aromatic compounds in an industrial area of Poland. Carcinogenesis (in press).Google Scholar
  21. Herbert, R., Marcus, M., Wolff, M.S., Perera, F.P., Andrews, L., Godbold, J.H., Stefanidis, M., Rivera, M., Lu, X.Q., Landrigan, P.J., and Santella, R.M.Detection of DNA adducts in white blood cells of roofers by 32P postlabeling. Scand. J. Work. Environ. Hlth. (in press).Google Scholar
  22. Hertzog, P.J., Smith, J.R.L., and Garner, R.C. (1982). Production of monoclonal antibodies to guanine imidazole ring opened aflatoxin B1 DNA, the persistent DNA adduct in vivo. Carcinogenesis, 3, 825–828.CrossRefGoogle Scholar
  23. Hsieh, L.L., Jeffrey, A.M., and Santella, R.M. (1985). Monoclonal antibodies to 1- aminopyrene-DNA. Carcinogenesis, 6, 1289–1293.CrossRefPubMedGoogle Scholar
  24. Hsieh, L.L., Hsu, S.W., Chen, D.S., and Santella, R.M. (1988). Immunoligical detection of aflatoxin Bl-DNA adducts formed in vivo. Cancer Res., 48, 6328–6331.Google Scholar
  25. International Agency for Research on Cancer (1985). IARC monographs on the evaluation of the carcinogenic risks of chemicals to humans: polynuclear aromatic compounds, Part 4. Lyon, IARC.Google Scholar
  26. Israel, Y., Hurwitz, E., Niemela, O., and Arnon, R. (1986). Monoclonal and polyclonal antibodies against acetaldehydecontaining epitopes in acetaldehyde-protein adducts. Proc. Natl. Acad. Sci. USA, 83, 7923–7927.Google Scholar
  27. Jeffrey, A.M., Weinstein, I.B., Jennette, K.W., Grzeskowiak, K., Nakanishi, K., Harvey, R.G., Autrup, H., and Harris, C. (1977). Structures of benzo[a]pyrenenucleic acid adducts formed in human and bovine bronchial explants. Nature, 269, 348–350.CrossRefPubMedGoogle Scholar
  28. Jongeneelen, F.J., Anzion, R.B.M., Leijdekkers, C.M., Bos, R.P., and Henderson, P.T.(1985). 1-Hydroxypyrene in human urine after exposure to coal tar and a coal tar derived product. Int. Arch. Occup. Environ. Hith., 57, 47–55.Google Scholar
  29. Leadon, S.A., and Hanawalt, P.C. (1983). Monoclonal antibody to DNA containing thymine glycol. Mutation Res., 112, 191–200.PubMedGoogle Scholar
  30. Lee, B.M., and Santella, R.M. (1988). Quantitation of protein adducts as a marker of genotoxic exposure: immunologic detection of benzo(a)pyrene-globin adducts in mice. Carcinogenesis, 9, 1773–1777.CrossRefPubMedGoogle Scholar
  31. Leng, M., Sage, E., Fuchs, R.P.P., and Daune, M.P. (1978). Antibodies to DNA Modified by the carcinogen N-acetoxy-N-2-acetylaminofluorene. FEBS Letter, 92, 207.CrossRefGoogle Scholar
  32. Ley, R.D. (1983). Immunological detection of two types of cyclobutane pyrimidine dimers in DNA. Cancer Res., 43, 41–45.PubMedGoogle Scholar
  33. Malfoy, B., Hartmann, B., Macquet, J.P., and Leng, M. (1981). Immunochemical studies of DNA modified by cis dichlorodiammine platinum (II). Cancer Res., 41, 4127–4131.Google Scholar
  34. Meridith, R.D., and Erlanger, B.F. (1979). Isolation and characterization of rabbit anti-m7G-5’-P antibodies of high apparent affinity. Nucleic Acids Res., 6, 2179–2191.CrossRefGoogle Scholar
  35. Miolo, G., Stefanidis, M., Santella, R.M., Acqua, F., and Gasparro, F. (1989). 6,4,4’Trimethylangelecin photoadduct formation in DNA: production and characterization of a specific monoclonal antibody. Photochem. Photobiol., 3, 101–112.Google Scholar
  36. Morita, T., Ikeda, S., Minoura, Y., Kojima, M., and Tada, M. (1988). Polyclonal antibodies to DNA modified with 4-nitroquinoline 1-oxide Application for the detection of 4-nitroquinoline 1-oxide-DNA adducts in vivo. Jpn. J. Cancer Res., (Gann) 79, 195–203.CrossRefGoogle Scholar
  37. Muller, R., and Rajewsky, M.F. (1980). Immunological quantification by high-affinity antibodies of 06- ethyldeoxyguanosine in DNA exposed to N-ethyl-N-nitrosourea. Cancer Res., 40, 887–896.PubMedGoogle Scholar
  38. Muller, R., and Rajewsky, M.F. (1981). Antibodies specific for DNA components structurally modified by chemical carcinogens. J. Cancer Res. Clin. Oncol., 102, 99–113.CrossRefPubMedGoogle Scholar
  39. Munns, T.W., Liszewski, M.K., and Sims, H.F. (1977). Characterization of antibodies specific for N6- methyladenosine and for 7-methylguanosine. Biochem., 16–10, 2163–2168.Google Scholar
  40. Mustonen, R., Hemminki, K., Alhonen, A., Hietanen, P., and Kiilunen, M. (1987). Determination cis-diamminedichlorodiplatinum (II) in blood compartments of cancer patients. In: Detection methods for DNA damaging agents in humans: Applications in cancer epidemiology and prevention. IARC, Lyon, p. (eds) Hemminki,K., Bartsch, H., and O’Neill, I.K.Google Scholar
  41. Neumann, H.G. (1984). Analysis of hemoglobin as a dose monitor for alkylating and arylating agents. Arch. Toxicol., 56, 1–6.Google Scholar
  42. Paigen, B., Ward, E., Reilly, A., Houten, L., Gurtoo, H.L., Minowada, J., SteenlandGoogle Scholar
  43. K., Havens, M.B., and Satori, P. (1981). Season variation of aryl hydrocarbon hydroxylase activity in human lymphocytes. Cancer Res., 41, 2757–2761.Google Scholar
  44. Perera, F.P., and Weinstein, I.B. (1982). Molecular epidemiology and carcinogen-DNA adduct detection: New approaches to studies of human cancer causation. J. Chron. Dis., 35, 581–600.CrossRefPubMedGoogle Scholar
  45. Perera, F.P., Santella, R.M., Brenner, D., Poirier, M.C., Munshi, A.A., Fischman, H.K., and VanRyzin, J. (1987). DNA adducts, protein adducts and SCE in cigarette smokers and nonsmokers. J. Natl. Cancer Inst., 79, 449–456.PubMedGoogle Scholar
  46. Perera, F.P., Hemminiki, K., Young, T.L., Santella, R.M., Brenner, D., and Kelly, G. (1988). Detection of polycyclic aromatic hydrocarbon-DNA adducts in white blood cells of foundry workers. Cancer Res., 48, 2288–2291.PubMedGoogle Scholar
  47. Perera, F., Mayer, J., Jaretzki, A., Hearne, S., Brenner, D., Young, T.L., Fischman, H.K., Grimes,M., Grantham,S.,Tang,M.X., Tsai,W-Y., Santella, R.M., (1989). Comparison of DNA adducts and sister chromatid exchange in lung cancer cases and controls. Cancer Res., 49, 4446–4451.Google Scholar
  48. Phillips, D.H., Hewer, A., Martin, C.N., Garner, R.C., and King, M.M. (1988a). Correlation of DNA adduct levels in human lung with cigarette smoking. Nature (London), 336, 790–792.CrossRefGoogle Scholar
  49. Phillips, D.H., Hemminki, K., Alhonen, A., Hewer, A., and Grover, P.L. (1988b). Monitoring occupational exposure to carcinogens:detection by 32P-postlabelling of aromatic DNA adducts in white blood cells from iron foundry workers. Mutation Res., 204, 531–541.Google Scholar
  50. Poirier, M.C., Yuspa, S.H., Weinstein, I.B., and Blobstein, S. (1977). Detection of carcinogen-DNA adducts by radioimmunoassay. Nature, 270, 186–188.CrossRefPubMedGoogle Scholar
  51. Poirier, M.C., Santella, R., Weinstein, I.B., Grunberger, D., and Yuspa, S.H. (1980). Quantitation of benzo[a]pyrene-deoxyguanosine adducts by radioimmunoassay. Cancer Res., 40, 412–416.PubMedGoogle Scholar
  52. Poirier, M.C., Lippard, S., Zwelling, L.A., Ushay, M., Kerrigan, D., Santella, R.M., Grunberger, D., and Yuspa, S.H. (1982a). Antibodies elicited against cis-diamminedichloroplatinum(II)-modified DNA are specific for cis-diamminedichloroplatinum(II)-DNA adducts formed in vivo and in vitro. Proc. Natl. Acad. Sci. USA, 79, 6443–6447.CrossRefGoogle Scholar
  53. Poirier, M.C., Stanley, J.R., Beckwith, J.B., Weinstein, I.B., and Yuspa, S.H., (1982b). Indirect immunofluorescent localization of benzo(a)pyrene adducted to nucleic acids in cultures mouse keratinocyte nuclei. Carcinogenesis, 3, 345–348.CrossRefPubMedGoogle Scholar
  54. Poirier, M.C., Nakayama, J., Perera, F.P., Weinstein, I.B., and Yuspa, S.H. (1983). Identification of carcinogen-DNA adducts by immunoassays. In Milman, H.A. and Sell, S. (eds.), Application of biological markers to carcinogen testing. Plenum Publ. Corp., New York, pp. 427–440.CrossRefGoogle Scholar
  55. Poirier, M.C. (1984). The use of carcinogen-DNA adduct antisera for quantitation and localization of genomic damage in animal models and the human population. Environ. Mutag., 6, 879–887.CrossRefGoogle Scholar
  56. Rajewsky, M.F., Muller, R., Adamkiewicz, J., and Drosdziok, W. (1980). Carcinogenesis: fundamental mechanisms and environmental effects. Dordrecht, Holland, Reidel Press, pp. 207–218.CrossRefGoogle Scholar
  57. Randerath,D., Reddy, M.V., and Gupta, R.A.C. (1981). [32PHabelling test for DNA damage. Proc. Natl. Acad. Sci. USA, 78, 6126–6129.Google Scholar
  58. Reddy, M.V., Gupta, R.C., Randerath, E., and Randerath, K. (1984). 32P-Postlabeling test for covalent DNA binding of chemicals in vivo: application to a variety of aromatic carcinogens and methylating agents. Carcinogenesis, 5, 231–243.Google Scholar
  59. Reddy, M.V., and Randerath, K. (1986). Nuclease Pl-mediated enhancement of sensitivity of [3211- postlabeling test for structurally diverse DNA adducts. Carcinogenesis, 7, 1543–1551.CrossRefPubMedGoogle Scholar
  60. Rio, P., and Leng, M. (1980). Antibodies to N-(guanosine-8-y1)-2-aminofluorene. Biochem., 62, 487–490.CrossRefGoogle Scholar
  61. Roberts, D.W., Pumford, N.R., Potter, D.W., Benson, R.W., and Hinson, J.A. (1987). A sensitive immunochemical assay for acetaminophen-protein adducts. J. Pharmaco. Experim. Therapeu., 241, 527–533.Google Scholar
  62. Roberts, D.W., Benson, R.W., Groopman, J.D., Flammang, T.J., Nagle, W.A., Moss, A.J., and Kadlubar, F.F. (1988). Immunochemical quantitation of DNA adducts derived from the human bladder carcinogen, 4-aminobiphenyl. Cancer Res., 48, 6336–6342.PubMedGoogle Scholar
  63. Sage, E., Fuchs, R.P., and Leng, M. (1979). Reactivity of the antibodies to DNA modified by the carcinogen N-acetoxy-N-acety1–2-aminofluorene. Biochem., 18, 1328–1334.CrossRefGoogle Scholar
  64. Santella, R.M. (1988). Application of new techniques for the detection of carcinogen adducts to human population monitoring. Mutation Res., 205, 271–282.CrossRefPubMedGoogle Scholar
  65. Santella, R.M., Lin, C.D., Cleveland, W.L., and Weinstein, I.B. (1984). Monoclonal antibodies to DNA modified by a benzo[a]pyrene diol epoxide. Carcinogenesis, 5, 373–377.CrossRefPubMedGoogle Scholar
  66. Santella, R.M., Dharmaraja, N., Gasparro, F.P., and Edelson, R.L. (1985). Monoclonal Antibodies to DNA modified by 8-methoxypsoralen and ultraviolet A light. Nucleic Acids Res., 13, 2533–2544.CrossRefGoogle Scholar
  67. Santella, R.M., Lin, C.D., and Dharmaraja, N. (1986). Monoclonal antibodies to a benzo[a]pyrene diolepoxide modified protein. Carcinogenesis, 7, 441–444.CrossRefPubMedGoogle Scholar
  68. Santella, R.M., Gasparo, F.P., and Hsieh, L.L. (1987). Quantitation of carcinogen-DNA adducts with monoclonal antibodies. Progr. Experim. Tumor Res., 31, 63–75.Google Scholar
  69. Santella, R.M., Weston, A., Perera, F.P., Trivers, G.T., Harris, C.C., Young, T.L.,Nguyen, D., Lee, B.M., Poirier, M.C. (1988). Interlaboratory comparison of antisera and immunoassays for benzo(a)pyrene-diol-epoxide-I-modified DNA. Carcinogenesis, 9, 1265–1269.Google Scholar
  70. Sato, F., Zordan, M., Tomanin, R., Mazzotti, D., Canova, A., Cardin, E.L., Bezze, G., and Levis, A.G. (1989). Chromosomal alterations in peripheral blood lymphocytes, urinary mutagenicity and excretion of polycyclic aromatic hydrocarbons in six psoriatic patients undergoing coal tar therapy. Carcinogenesis, 10, 329–334.CrossRefGoogle Scholar
  71. Seidegard, J., Pero, R.W., Miller, D.G., and Beattie, E.J. (1986). A glutathione transferase in human leukocytes as a marker for the susceptibility to lung cancer. Carcinogenesis, 7, 751–753.CrossRefPubMedGoogle Scholar
  72. Shugart, L. (1986). Quantifying adductive modification of hemoglobin from mice exposed to benzo[a]pyrene. Anal. Biochem., 152, 365–369.CrossRefPubMedGoogle Scholar
  73. Slor, H., Mizusawa, N., Nechart, T., Kakefuda, R., Day, R.S., and Bustin, M. (1981). Immunochemical visualization of binding of the chemical carcinogen benzo[a]pyrene diol epoxide to the genome. Cancer Res., 41, 3111–3117.PubMedGoogle Scholar
  74. Stein, A.M., Gratzner, H.G., Stein, J.H., and McCabe, M.M. (1989). High avidity monoclonal antibody to imidazole ring-opened ethylguanine. Carcinogenesis, 10, 927–973.PubMedGoogle Scholar
  75. Storer, J.S., DeLeon, I., Millikan, L.E., Laseter, J.L., and Griffing, C. (1984). Human Absorption of crude coal tar products. Arch. Derm. 120 874–877.CrossRefPubMedGoogle Scholar
  76. Strickland,P.T., and Boyle, J.M. (1981). Characterisation of two monoclonal antibodies specific for dimerised and non-dimerised adjacent thymidines in single stranded DNA. Photochem. Photobiol., 34, 595–601.Google Scholar
  77. Strickland, P.T., and Boyle, J.M. (1984). Immunoassay of carcinogen-modified DNA. In Cohn, W.E. (ed.), Progress in Nucleic Acid Research & Molecular Biology. Academic Press, New York, pp. 1–58.Google Scholar
  78. Sundquist, W.I., Lippard, S.J., and Stollar, B.D. (1987). Monoclonal antibodies to DNA modified with cis-or trans-diamminedichloroplatinum (II). Biochem, 84, 8225–8229.Google Scholar
  79. Tilby, M.J., Styles, J.M., and Dean, C.J. (1987). Immunological dectection of DNA damage caused by melphalan using monoclonal antibodies. Cancer Res., 47, 1542–1546.PubMedGoogle Scholar
  80. Tornqvist, M., Osterman-Golkar, S., Kautiainen, S., Jensen, S., Farmer, P.B., and Ehrenberg, L. (1986). Tissue doses of ethylene oxide in cigarette smokers determined from adduct levels in hemoglobin. Carcinogenesis, 7, 1519–1521.CrossRefPubMedGoogle Scholar
  81. van Schooten, F.J., Kriek, E., Steenwinkel, M.S.T., Noteborn, H.P.J.M.,Hillebrand, M.J.X., and vanLeeuwen, F.E. (1987). The binding efficiency of polyclonal and monoclonal antibodies to DNA modified with benzo[a]pyrene diol epoxide is dependent on the level of modification. Implications for quantitation of benzo[a]pyrene-DNA adducts in vivo. Carcinogenesis, 8, 1263–1269.CrossRefGoogle Scholar
  82. Van der Laken, C.J., Hagenaars, A.M., Hermsen, G., Kriek, E., Kuipers, A.J., Nagel, J., Scherer, E., and Welling, M. (1982). Measurement of 06-ethyl- deoxyguanosine and N-(deoxyguanosine-8-yl)-N-acetyl-2-aminofluorene in DNA by high-sensitive enzyme immunoassays. Carcinogenesis, 3, 569–572.CrossRefGoogle Scholar
  83. Wallin, H., Jeffrey, A.M., and Santella, R.M. (1987). Investigation of benzo[a]pyreneglobin adducts. Cancer Let., 35, 139–146.CrossRefGoogle Scholar
  84. Wani, A.A., Gibson-D’Ambrosio, R.E., and D’Ambrosio, M.D. (1984). Antibodies to UV irradiated DNA: the monitoring of DNA damage by Elisa and indirect immunofluorescence. Photochem. Photobiol., 40, 465–471.CrossRefPubMedGoogle Scholar
  85. Weston, A., Trivers, G., Vahakangas, K., Newman, M., and Rowe, M. (1987). Detection of carcinogen-DNA adducts in human cells and antibodies to these adducts in human sera. Prog. Experim. Tumor Res., 31, 76–85.Google Scholar
  86. Weston, A., Rowe, M.I., Manchester, D.K., Farmer, P.B., Mann, D.L., and Harris, C.C. (1989). Fluorescence and mass spectral evidence for the formation of benzo(a)pyrene anti-diol-epoxide-DNA and -hemoglobin adducts in humans. Carcinogenesis, 10, 251–257.CrossRefPubMedGoogle Scholar
  87. Wheeler, L.A., Saperstein, M.D., and Lowe, N.J. (1981). Mutagenicity of urine from psoriatic patients undergoing treatment with coal tar and ultraviolet light. J. Invest. Derm., 77, 181–185.CrossRefPubMedGoogle Scholar
  88. Wild, C.P., Jiang, Y.Z., Sabbioni, G., Chapot, B., and Montesano, R. (1990). Evaluation of methods for quantitation of aflatoxin-albumim and their application to human exposure assessment. Cancer Res., 50, 245–251.PubMedGoogle Scholar
  89. Wild, C.P., Smart, G., Saffhill, R., and Boyle, J.M. (1983). Radioimmunoassay of 06 methyldeoxyguanosine in DNA of cells alkylated in vitro and in vivo. Carcinogenesis, 4, 1605–1609.CrossRefPubMedGoogle Scholar
  90. Wilson, V.L., Basu, A.K., Essigmann, J.M., Smith, R.A., and Harris, C.C. (1988). 06-Alkyldeoxyguanosine detection by 32P-postlabeling and nucleotide chromatographic analysis. Cancer Res., 48, 2156–2161.PubMedGoogle Scholar
  91. Wraith, M.J., Watson, W.P., Eadsforth, C.V., van Sittert, N.J., and Wright, A.S. (1988). An immunoassay for monitoring human exposure to ethylene oxide. In Bartsch, H., Hemminki, K., and O’Neill,I.K. (eds.), Methods for detecting DNA damaging agents in humans: applications in cancer epidemiology and prevention. IARC Publications, Lyon, pp. 271–274.Google Scholar
  92. Yang, X.Y., DeLeo, V., and Santella, R.M. (1987). Immunological detection and visualization of 8-methoxypsoralen-DNA photoadducts. Cancer Res., 47, 2451–2455.PubMedGoogle Scholar
  93. Yang, X.Y., Gasparro, F.P., DeLeo, V.A., and Santella, R.M. (1989). 8- Methoxypsoralen-DNA adducts in patients treated with 8-methoxypsoralen and ultraviolet a light. J. Invest. Derm., 92, 59–63.CrossRefPubMedGoogle Scholar
  94. Young, T.L., and Santella, R.M. (1988). Development of techniques to monitor for exposure to vinyl chloride: monoclonal antibodies to ethenoadenosine and ethenocytine. Carcinogenesis, 9, 589–592.CrossRefPubMedGoogle Scholar
  95. Zarebska, Z., Jarbabek-Chorzelska, M., Chorzelski, T., and Zablonska, S. (1984). Immune serum against anti DNA-8-methoxypsoralen photoadduct. Z. Naturforsch, 39, 136–140.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Regina M. Santella
    • 1
  • Yu Jing Zhang
    • 1
  • Tie Lan Young
    • 1
  • Byung Mu Lee
    • 1
  • Xiao Qing Lu
    • 1
  1. 1.Comprehensive Cancer Center and Division of Environmental Sciences, School of Public HealthColumbia UniversityNew YorkUSA

Personalised recommendations