Hapten Carrier Conjugates Associated with Halothane Hepatitis

  • Lance R. Pohl
  • David Thomassen
  • Neil R. Pumford
  • Lynn E. Butler
  • Hiroko Satoh
  • Victor J. Ferrans
  • Andrea Perrone
  • Brian M. Martin
  • Jackie L. Martin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 283)


The elucidation of the mechanism of hepatitis caused by the inhalation anesthetic agent halothane (CF3CHClBr) (Satoh et al., 1987; Neuberger and Kenna, 1987; Weis and Engelhardt, 1989) is important since halothane is still widely used in adults in the United Kingdom and Europe (Neuberger and Kenna, 1987; Weis and Engelhardt, 1989) and is often an agent of choice for children (Hals et al., 1986; Whitburn and Sumner, 1986; Kenna et al., 1987a). Also, recent reports suggest that the structurally related inhalation anesthetic enflurane (CHF2OCF2CHFCl), which is widely used in adults in the United States, may cause liver damage by a similar process (Christ et al., 1988a; Christ et al., 1988b).


Endoplasmic Reticulum Liver Microsome Protein Disulfide Isomerase Halothane Hepatitis Malfolded Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Booth, C., and Koch, G. (1989). Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell 59, 729–737.CrossRefPubMedGoogle Scholar
  2. Calder, V., Owen, S., Watson, C., Feldmann, M., and Davison, A. (1989). MS: a localized immune disease of the central nervous system. Immunol. Today 10, 99–103.Google Scholar
  3. Callis, A.H., Brooks, S.D., Roth, T.P., Gandolfi, A.J., and Brown, B.R. (1987). Characterization of a halothane-induced immune response in rabbits. Clin. Exp. Immunol. 67, 343–351.PubMedGoogle Scholar
  4. Christ, D.D., Kenna, J.G., Kammerer, W., Satoh, H., and Pohl, L.R. (1988a). Enflurane metabolism produces covalently-bound liver adducts recognized by antibodies from patients with halothane hepatitis. Anesthesiology 69, 833–838.CrossRefPubMedGoogle Scholar
  5. Christ, D.D., Satoh, H., Kenna, J.G., and Pohl, L.R. (1988b). Potential metabolic basis for enflurane hepatitis and the apparent cross-sensitization between enflurane and halothane. Drug Metab. Disp. 16, 135–140.Google Scholar
  6. Deshaies, R.J., Koch, B.D., and Schekman, R. (1988). The role of stress proteins in membrane biogenesis. Trends. Biochem. Sci. 13, 384–388.CrossRefGoogle Scholar
  7. Farrell, G. (1988). Mechanism of halothane-induced liver injury:Is it immune or metabolic idiosyncrasy. J. Gastroenterol. Hepatol. 3, 465–482.CrossRefGoogle Scholar
  8. Freedman, R.B. (1989). Protein disulfide isomerase: multiple roles in the modification of nascent secretory proteins. Cell 57, 1069–1072.CrossRefPubMedGoogle Scholar
  9. Hals, J., Dodgson, M.S., Skulberg, A., and Kenna, J.G. (1986). Halothane-associated liver damage and renal failure in a young child. Acta Anaesthesiol. Scand. 30, 651–655.Google Scholar
  10. Harano, T., Miyata, T., Lee, S., Aoyagi, H., and Omura, T. (1988). Biosynthesis and localization of rat liver microsomal carboxyesterase El. J. Biochem. 103, 149–155.PubMedGoogle Scholar
  11. Kenna, J.G., Neuberger, J., Mieli-Vergani, G., Mowat, A.P., and Williams, R. (1987a). Halothane hepatitis in children. Br. Med. J. 294, 1209–1211.CrossRefGoogle Scholar
  12. Kenna, J.G., Neuberger, J., and Williams, R. (1987b). Identification by immunoblotting of three halothane-induced liver microsomal polypeptide antigens recognized by antibodies in sera from patients with halothane-associated hepatitis. J. Pharmacol. Exp. Ther. 242, 733–740.PubMedGoogle Scholar
  13. Kenna, J.G., Satoh, H., Christ, D.D., and Pohl, L.R. (1988a). Metabolic basis for a drug hypersensitivity:antibodies in sera from patients with halothane hepatitis recognize liver neoantigens that contain the trifluoroacetyl group derived from halothane. J. Pharmacol. Exp. Ther. 245, 1103–1109.PubMedGoogle Scholar
  14. Kenna, J.G., Neuberger, J.M., and Williams, R. (1988b). Evidence for expression in human liver of halothane induced neoantigens recognized by antibodies in sera from patients with halothane hepatitis. Hepatology 8, 1635–1641.CrossRefPubMedGoogle Scholar
  15. Kenna, J.G., Martin, J.L., Satoh, H., and Pohl, L.R. (1990). Factors affecting the expression of trifluoroacetylated liver microsomal protein neoantigens in rats treated with halothane. Drug Metab. Disp. (in press)Google Scholar
  16. Long, E.O. (1989). Intracellular traffic and antigen processing. Immunol. Today 10, 232–234.CrossRefPubMedGoogle Scholar
  17. Long, R.M., Satoh, H., Martin, B.M., Kimura, S., Gonzalez, F.J., and Pohl, L.R. (1988). Rat liver carboxylesterase: cDNA cloning, sequencing, and evidence for a multigene family. Biochem. Biophys. Res. Commuri. 156, 866–873.CrossRefGoogle Scholar
  18. Macer, D.R., and Koch, G.L. (1988). Identification of a set of calcium-binding proteins in reticuloplasm, the luminal content of the endoplasmic reticulum. J. Cell Sci. 91, 61–70.PubMedGoogle Scholar
  19. Martin, J.L., Kenna, J.G., Martin B.M., and Pohl, L.R. (1989). Trifluoroacetylated protein disulfide isomerase is a halothane-induced neoantigen. Toxicologist 9, 5.Google Scholar
  20. Martin, J.L., Kenna, J.G., and Pohl, L.R. (1990). Antibody assays for the detection of patients sensitized to halothane. Anesth. Analg. (in press)Google Scholar
  21. Mazzarella, R.A., and Green, M. (1987). ERp99, an abundant, conserved glycoprotein of the endoplasmic reticulum, is homologous to the 90-kDa heat shock protein (hsp90) and the 94-kDa glucose regulated protein (GRP94). J. Biol. Chem. 262, 8875–8883.PubMedGoogle Scholar
  22. Medda, S., Chemelli, R.M., Martin, J.L., Pohl, L.R., and Swank, R.T. (1989). Involvement of the carboxyl-terminal propeptide of beta-glucuronidase in its compartmentalization within the endoplasmic reticulum as determined by a synthetic peptide approach. J. Biol. Chem. 264, 15824–15828.PubMedGoogle Scholar
  23. Mentlein, R., Heiland, S., and Heymann, E. (1980). Simultaneous purification and comparative characterization of six serine hydrolases from rat liver microsomes. Arch. Biochem. Biophys. 200, 547–559.CrossRefGoogle Scholar
  24. Mentlein, R., and Heymann, E. (1984). Hydrolysis of ester-and amide-type drugs by the purified isoenzymes of nonspecific carboxylesterase from rat liver. Biochem. Pharmacol. 33, 1243–1248.CrossRefPubMedGoogle Scholar
  25. Mentlein, R., Schumann, M., and Heymann, E. (1984a). Comparative chemical and immunological characterization of five lipolytic enzymes (carboxylesterases) from rat liver microsomes. Arch. Biochem. Biophys. 234, 612–621.CrossRefGoogle Scholar
  26. Mentlein, R., Suttorp, M., and Heymann, E. (1984b). Specificity of purified monoacylglycerol lipase, palmitoyl- CoA hydrolase, palmitoyl-carniane hydrolase, and nonspecific carboxylesterase from rat liver microsomes. Arch. Biochem. Biophys. 228, 230–246.CrossRefPubMedGoogle Scholar
  27. Mentlein, R., Berge, R.K., and Heymann, E. (1985a). Identity of purified monoacylglycerol lipase, palmitoyl- CoA hydrolase and aspirin-metabolizing carboxylesterase from rat liver microsomal fractions. A comparative study with enzymes purified in different laboratories. Biochem. J. 232, 479–483.PubMedGoogle Scholar
  28. Mentlein, R., Reuter, G., and Heymann, E. (1985b). Specificity of two different purified acylcarnitine hydrolases from rat liver, their identity with other carboxylesterases, and their possible function. Arch. Biochem. Biophys. 240, 801–810.CrossRefPubMedGoogle Scholar
  29. Mentlein, R., Ronal, A., Robbi, M., Heymann, E., and von Deimling, O. (1987). Genetic identification of rat liver carboxylesterases isolated in different laboratories. Biochim. Biophys. Acta 913, 27–38.Google Scholar
  30. Mentlein, R., Rix-Matzen, H., and Heymann, E. (1988). Subcellular localization of non-specific carboxylesterases, acylcarnitine hydrolase, monoacylglycerol lipase and palmitoyl-CoA hydrolase in rat liver. Biochim. Biophys. Acta 964, 319–328.CrossRefPubMedGoogle Scholar
  31. Neuberger, J., and Kenna, J.G. (1987a). Halothane hepatitis: A model of immune mediated drug hepatotoxicity. Clin. Sci. 72, 263–270.PubMedGoogle Scholar
  32. Neuberger, J., Kenna, J.G., and Williams, R. (1987b). Halothane hepatitis:Attempt to develop an animal model. Int. J. Immunopharmacol. 9, 123–131.CrossRefPubMedGoogle Scholar
  33. Park, B.K., Coleman, J.W., and Kitteringham, N.R. (1987). Drug disposition and drug hypersenSitivity. Biochem. Pharmacol. 36, 581–590.CrossRefPubMedGoogle Scholar
  34. Pelham, H. (1989). Control of protein exit from the endoplasmic reticulum. Annu. Rev. Cell Biol. 5, 1–23.CrossRefGoogle Scholar
  35. Pohl, L.R., Satoh, H., Christ, D.D., and Kenna, J.G. (1988). The immunologic and metabolic basis of drug hypersensitivities. Ann. Rev. Pharmacol. Toxicol. 28, 367–87.CrossRefGoogle Scholar
  36. Pohl, L.R., Kenna, J.G., Satoh, H., Christ, D.D., and Martin, J.L. (1989a). Neoantigens associated with halothane hepatitis. Drug Metab. Rev. 20, 203–217.CrossRefGoogle Scholar
  37. Pohl, L.R. (1989b). Drug-induced allergic hepatitis: does isaxonine fall into this category. Hepatology 9, 785–788.CrossRefPubMedGoogle Scholar
  38. Robbi, M., and Beaufay, H. (1983). Purification and characterization of various esterases from rat liver. Eur. J. Biochem. 137, 293–301.CrossRefPubMedGoogle Scholar
  39. Robbi, M., and Beaufay, H. (1987). Biosynthesis of rat liver pI-6.1 esterase, a carboxylesterase of the cisternal space of the endoplasmic reticulum. Biochem. J. 248, 545–550.PubMedGoogle Scholar
  40. Roth, T.P., Hubbard, A.K., Gandolfi, A.J., and Brown, B.R. (1988). Chronology of halothane-induced antigen expression in halothane-exposed rabbits. Clin. Exp. Immunol. 72, 330–336.PubMedGoogle Scholar
  41. Satoh, H., Gillette, J.R., Davies, H.W., Schulick, R.D., and Pohl, L.R. (1985a). Immunochemical evidence of trifluoroacetylated cytochrome P-450 in liver of halothane-treated rats. Mol. Pharmacol. 28, 468–474.PubMedGoogle Scholar
  42. Satoh, H., Fukuda, Y., Anderson, D.K., Ferrans, V.J., Gillette, J.R., and Pohl, L.R. (1985b). Immunological studies on the mechanism of halothane-induced hepatotoxicity:Immunohistochemical evidence of trifluoroacetylated hepatocytes. J. Pharmacol. Exp. Ther. 233, 857–862.PubMedGoogle Scholar
  43. Satoh, H., Davies, H.W., Takemura, T., Gillette, J.R., Maeda, K., and Pohl, L.R. (1987). An immunochemical approach to investigating the mechanism of halothane-induced hepatotoxicity. In Progress in Drug Metabolism ( J.W. Bridges, L.F. Chasseaud, and G.G. Gibson, Eds.), pp. 187–206. Taylor & Francis, Philadelphia.Google Scholar
  44. Satoh, H., Martin, B.M., Schulick, A.H., Christ, D.D., Kenna, J.G., and Pohl, L.R. (1989). Human anti-endoplasmic reticulum antibodies in sera of halothane hepatitis patients are directed against a trifluoroacetylated carboxylesterase. Proc. Natl. Acad. Sci. (USA) 86, 322–326.CrossRefGoogle Scholar
  45. Satoh, T. (1987). Role of carboxylesterases in xenobiotic metabolism. Reviews in Biochem. Toxicol. 8, 155–181.Google Scholar
  46. Takagi, Y., Morohashi, K., Kawabata, S., Go, M., and Omura, T. (1988). Molecular cloning and nucleotide sequence of cDNA of microsomal carboxyesterase El of rat liver. J. Biochem. (Tokyo.) 104, 801–806.Google Scholar
  47. Thomassen, D., Martin, B.M., Martin, J.L., Pumford, N.R., and Pohl, L.R. (1990). Characterization of a halothane induced trifluoroacetylated 100 kDa neoantigen that is related to a glucose-regulated protein. FASEB Journal (in press)Google Scholar
  48. Van, P.N., Peter, F., and Soling, H.D. (1989). Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium. No indication for calsequestrin-like proteins in inositol 1,4,5-trisphosphate-sensitive calcium sequestering rat liver vesicles. J. Biol. Chem. 264, 17494–17501.PubMedGoogle Scholar
  49. Weis, K.H., and Engelhardt, W. (1989). Is halothane obsolete? Two standards of judgement. Anaesthesia 44, 97–100.CrossRefPubMedGoogle Scholar
  50. Whitburn, R.H., and Sumner, E. (1986). Halothane hepatitis in an 11-month-old child. Anaesthesia. 41, 611–613.CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Lance R. Pohl
    • 1
  • David Thomassen
    • 1
  • Neil R. Pumford
    • 1
  • Lynn E. Butler
    • 1
  • Hiroko Satoh
    • 1
  • Victor J. Ferrans
    • 1
    • 2
  • Andrea Perrone
    • 1
  • Brian M. Martin
    • 1
    • 3
  • Jackie L. Martin
    • 1
  1. 1.Laboratory of Chemical PharmacologyNational Heart, Lung, and Blood InstituteBethesdaUSA
  2. 2.Pathology Branch, Ultrastructure SectionNational Heart, Lung, and Blood InstituteBethesdaUSA
  3. 3.Clinical Neurosciences BranchNational Institute of Mental Health National Institutes of HealthBethesdaUSA

Personalised recommendations