Advertisement

Evidence for the Induction of an Oxidative Stress in Rat Hepatic Mitochondria by 2,3,7,8-Tetrachlorodibenzo-P-Dioxin (TCDD)

  • S. J. Stohs
  • N. Z. Alsharif
  • M. A. Shara
  • Z. A. F. Al-Bayati
  • Z. Z. Wahba
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 283)

Abstract

TCDD is prototypical of a large number of halogenated polycyclic hydrocarbons that occur as environmental contaminants and pollutants (Safe, 1986; Poland and Knutson, 1982; Poland et al., 1985). Following the acute exposure to a toxic dose of TCDD and its bioisosteres, a progressive weight loss with hypophagia and depletion of adipose tissue occurs (Safe, 1986; Kociba and Schwetz, 1982; Neal et al., 1982; Poland and Knutson, 1982). In addition, hepatic, gastric and epidermal lesions, thymic involution, and increased excretion of porphyrins occur (Poland and Knutson, 1982; Kociba and Schwetz, 1982). Evidence indicates that the mechanism of toxicity of TCDD and its bioisosteres involves binding to a specific TCDD (Ah) receptor, interaction of this complex with chromatin, and the ultimate production of a pleiotropic response (Cook et al., 1987; Safe, 1988; Poland and Knutson, 1982). the post-translational pathways and mechanisms involved in the expression of the toxic effects of TCDD are not known.

Keywords

Lipid Peroxidation Membrane Fluidity Calcium Content Polycyclic Hydrocarbon Interscapular Brown Adipose Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Bayati, Z.A.F. and Stohs, S.J. (1987). The role of iron in 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD)-induced lipid peroxidation by rat liver microsomes. Toxicol. Lett. 38, 115–121.PubMedCrossRefGoogle Scholar
  2. Al-Bayati, Z.A.F., Murray, W.J., and Stohs, S.J. (1987). TCDD-induced lipid peroxidation in hepatic and extrahepatic tissues of male and female rats. Arch. Environ. Contam. Toxicol. 16, 259–266.CrossRefGoogle Scholar
  3. Cook, J.C., Gaido, K.W, and Greenlee, W.F. (1987). Ah receptor: relevance of mechanistic studies to human risk assessment. Environ. Hlth. Persp. 76, 71–77.CrossRefGoogle Scholar
  4. Giblin, F.J. and Reddy, V.M. (1980). Pyridine nucleotides in ocular tissues as determined by the cycling assay. Exp. Eye Res. 31, 601–609.PubMedCrossRefGoogle Scholar
  5. Goldstein, J.A., Hickman, P., Bergman, H., and vos, J.G. (1973). Hepatic porphyria induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in the mouse. Res. comm. Chem. Path. 6, 919–928.Google Scholar
  6. Hassan, M.Q., Stohs, S.J., and Murray, W.J. (1983). comparative ability of TCDD to induce lipid peroxidation in rats, guinea pigs and Syrian golden Hamsters. Bull. Environ. Contam. Toxicol. 31, 649–657.PubMedCrossRefGoogle Scholar
  7. Hermansky, S.J., Holeslaw, T.L., Murray, W.J., Markin, R.S., and Stohs, S.J. (1988). Biochemical and functional effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the heart of female rats. Toxicol. Appl. Pharmacol. 95, 174–184.CrossRefGoogle Scholar
  8. Kociba, R.J. and Schwetz, B.A. (1982). Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Drug Metab. Rev. 13, 387–406.PubMedCrossRefGoogle Scholar
  9. Lowry, O.H., Rosebrough, N.J., Farr, W.L., and Randall, R.J. (1951). Protein measurement with folin phenol reagent. J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  10. Luschen, G., Azzi, A., Richter, C., and Flohe, L. (1974). Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 42, 68–72.CrossRefGoogle Scholar
  11. Miles, P.R., Wright, J.R., Browman, L., and Colby, H.D. (1980). Inhibition of hepatic microsomal lipid peroxidation by drug substrates without drug metabolism. Biochem. Pharmacol. 29, 565–570.PubMedCrossRefGoogle Scholar
  12. Neal, R.A., Olson, J.R., Gasiewicz, T.A. and Geiger, L.E. (1982). the toxicokinetics of 2,3,7,8-tetrachlorodibenzo-p-dioxin in mammalian systems. Drug Met. Rev. 13, 355–385.CrossRefGoogle Scholar
  13. Nohl, H. and Jordan, W. (1986). The mitochondrial site of superoxide formation. Biochem. Biophys. Res. Comm. 138, 533–539.PubMedCrossRefGoogle Scholar
  14. Nohl, H., Desilva, D., and Summer, K.H. (1989). 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces oxygen activation associated with cell respiration. Free Rad. Biol. Med. 6, 369–374.PubMedCrossRefGoogle Scholar
  15. Poland, A. and Knutson, J.C. (1982). 2,3,7,8-Tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: Examination of the mechanism of toxicity. Ann. Rev. Pharmacol. Toxicol. 22, 517–554.CrossRefGoogle Scholar
  16. Poland, A. and Knutson, J.C. and Glover E. (1985). Studies on the mechanism of action of halogenated aromatic hydrocarbons. Clin. Physiol. Biochem. 3, 147–154.PubMedGoogle Scholar
  17. Rozman, K., Pereira, D., and Iatropoulos, M.J. (1986). Histopathology of interseapular brown adipose tissue, thyroid, and pancreas in 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD)-treated rats. Toxicol. Appl. Pharmacol. 82, 551–559.PubMedCrossRefGoogle Scholar
  18. Safe, S.H. (1986). Comparative toxicology and mechanism of action of polychlorinated dibenzo-p-dioxins and dibenzofurans. Ann. Rev. Pharmacol. Toxicol. 26, 371–399.CrossRefGoogle Scholar
  19. Safe, S.H. (1988). the aryl hydrocarbon (Ah) receptor. ISI Atlas Sci: Pharmacol., 78–83.Google Scholar
  20. Sedlack, J. and Lindsay, R.H. (1968). Estimation of total, protein-bound and non-protein bound sulfhydryl groups in tissue with Ellman’s Reagent. Anal. Biochem. 25, 192–205.CrossRefGoogle Scholar
  21. Shara, M.A. and Stohs, S.J. (1987). Biochemical and toxicological effects of 2,3,7,8tetrachlorodibenzo-p-dioxin (TCDD) congeners in female rats. Arch. Environ. Contam. Toxicol. 16, 597–605.CrossRefGoogle Scholar
  22. Stohs, S.J., Hassan, M.Q., and Murray, W.J. (1984). Induction of lipid peroxidation and inhibition of glutathione peroxidase by TCDD. Banbury Report #18, Banbury Center, Cold Spring Harbor Laboratory, NY., pp. 241–253.Google Scholar
  23. Stubbs, C.D., Tsang, W.M., Belin, J., Smith, A.D., and Johnson, S.M. (1980). Incubation of exogenous fatty acids with lymphocytes: changes in fatty acid composition and effects on the rotational relaxation time of 1,6-diphenyl-1,3,5-hexatriene. Biochemistry 19, 2756–2762.PubMedCrossRefGoogle Scholar
  24. Uchiyama, M. and Mihara, M. (1978). Determination of malondialdehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 86, 271–278.PubMedCrossRefGoogle Scholar
  25. Wahba, Z.Z., Al-Bayati, Z.A.F., and Stohs, S.J. (1988). Effect of 2,3,7,8tetrachlorodibenzo-p-dioxin (TCDD) on the hepatic distribution of iron, copper, zinc and magnesium in rats. J. Biochem. toxicol. 3, 121–129.PubMedCrossRefGoogle Scholar
  26. Wahba, Z.Z., Murray, W.J., Hassan, M.Q., and Stohs, S.J. (1989a). comparative effects of pair-feeding and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on various biochemical parameters in female rats. Toxicology 59, 311–323.CrossRefGoogle Scholar
  27. Wahba, Z.Z., Lawson, T.A., Murray, W.J., and Stohs, S.J. (1989b). Factors influencing the induction of DNA single strand breaks in rats by 2,3,7,8-tetrachiorodibenzop-dioxin (TCDD). Toxicology 58, 57–69.PubMedCrossRefGoogle Scholar
  28. White, R.D., Sipes, I.G., Gandolfi, A.J. and Bowden, G.T. (1981). Characterization of the hepatic DNA damage caused by 1,2-dibromoethane using the alkaline elution technique. Carcinogenesis 2, 839.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • S. J. Stohs
    • 1
  • N. Z. Alsharif
    • 1
  • M. A. Shara
    • 1
  • Z. A. F. Al-Bayati
    • 1
  • Z. Z. Wahba
    • 1
  1. 1.School of Pharmacology and Allied HealthCreighton UniversityOmahaUSA

Personalised recommendations