Cytochrome P-450 Oxidations and the Generation of Biologically Reactive Intermediates

  • F. Peter Guengerich
  • Tsutomu Shimada
  • Arnaud Bondon
  • Timothy L. Macdonald
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 283)

Abstract

Cytochrome P-450 (P-450) enzymes are involved in the oxidation of many steroids, eicosanoids, pesticides, drugs, and carcinogens. Considerable evidence has been accrued over the years to support the view that the majority of chemical carcinogens require bioactivation in order to elicit tumor initiation, and many toxic chemicals other than carcinogens also require bioactivation. The P-450 enzymes are probably involved to a greater extent than any other enzymes in the generation of the biological reactive intermediates involved in such toxicities (for reviews see Nelson, 1982; Guengerich and Liebler, 1985; Nelson and Harvison, 1987; Kadlubar and Hammons, 1987; Guengerich, 1988). Thus, a proper knowledge of these enzymes and the chemistry involved in catalysis is requisite for a rational understanding of schemes of toxicity and carcinogenesis.

Keywords

Pyrene Pyrrole Tritium Halide Quinoline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augusto, O., Beilan, H. S., and Ortiz de Montellano, P. R. (1982). The catalytic mechanism of cytochrome P-450. Spin-trapping evidence for one-electron substrate oxidation. J. Biol. Chem. 257, 11288–11295.PubMedGoogle Scholar
  2. Baba, T., Yamada, H., Oguri, K., and Yoshimura, H. (1988). Participation of cytochrome P-450 isozymes in N-demethylation, N-hydroxylation and aromatic hydroxylation of methamphetamine. Xenobiotica 18, 475–484.CrossRefPubMedGoogle Scholar
  3. Bondon, A., Macdonald, T. L., Harris, T. M., and Guengerich, F. P. (1989). Oxidation of cyclobutylamines by cytochrome P-450: Mechanism-based inactivation, adduct formation, ring expansion, and nitrone formation. J. Biol. Chem. 264, 1988–1997.PubMedGoogle Scholar
  4. Böcker, R. H., and Guengerich, F. P. (1986). Oxidation of 4-aryl-and 4-alkyl-substituted 2,6-dimethy1–3,5-bis-(alkoxycarbony1)-1,4-dihydropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450. J. Med. Chem. 29, 1596–1603.CrossRefPubMedGoogle Scholar
  5. Burka, L. T., Guengerich, F. P., Willard, R. J., and Macdonald, T. L. (1985). Mechanism of cytochrome P-450 catalysis. Mechanism of N-dealkylation and amine oxide deoxygenation. J. Am. Chem. Soc. 107, 2549–2551.CrossRefGoogle Scholar
  6. Burka, L. T., Thorsen, A., and Guengerich, F. P. (1980). Enzymatic monooxygenation of halogen atoms: Cytochrome P-450-catalyzed oxidation of iodobenzene by iodosobenzene. J. Am. Chem. Soc. 102, 7615–7616.CrossRefGoogle Scholar
  7. Dinnocenzo, J. P., and Banach, T. E. (1989). Deprotonation of tertiary amine cation radicals. A direct experimental approach. J. Am. Chem. Soc. 111, 8646–8653.Google Scholar
  8. Garrison, J. M., and Bruice, T. C. (1989). Intermediates in the epoxidation of alkenes by cytochrome P-450 models. 3. Mechanism of oxygen transfer from substyituted oxochromium (V) porphyrins to olefinic substrates. J. Am. Chem. Soc. 111, 191–198.CrossRefGoogle Scholar
  9. Griffin, B. W., and Ting, P. L. (1978). Mechanism of N-demethylation of aminopyrine by hydrogen peroxide catalyzed by horseradish peroxidase, not myoglobin, and protohemin. Biochemistry 17, 2206–2211.CrossRefPubMedGoogle Scholar
  10. Groves, J. T., and Watanabe, Y. (1986). On the mechanism of olefin epoxidation by oxo-iron porphyrins. Direct observation of an intermediate. J. Am. Chem. Soc. 108, 507–508.CrossRefPubMedGoogle Scholar
  11. Groves, J. T., Avaria-Neisser, G. E., Fish, K. M., Imachi, M., and Kuczkowski, R. L. (1986). Hydrogen-deuterium exchange during propylene oxidation by cytochrome P-450. J. Am. Chem. Soc. 108, 3837–3838.CrossRefGoogle Scholar
  12. Groves, J. T., McClusky, G. A., White, R. E., and Coon, M. J. (1978). Aliphatic hydroxylation by highly purified liver microsomal cytochrome P-450. Evidence for a carbon radical intermediate. Biochem. Biophys. Res. Commun. 76, 541–549.Google Scholar
  13. Guengerich, F. P. (1984). Oxidation of sparteines by cytochrome P-450: Evidence against the formation of N-oxides. J. Med. Chem. 27, 1101–1103.CrossRefPubMedGoogle Scholar
  14. Guengerich, F. P. (1987). Oxidative cleavage of carboxylic esters by cytochrome P450. J. Biol. Chem. 262, 8459–8462.PubMedGoogle Scholar
  15. Guengerich, F. P. (1988). Roles of cytochrome P-450 enzymes in chemical carcinogenesis and cancer chemotherapy. Cancer Res. 48, 2946–2954.Google Scholar
  16. Guengerich, F. P. (1989a). Biochemical characterization of human cytochrome P-450 enzymes. Ann. Rev. Pharmacol. Toxicol. 29, 241–264.CrossRefGoogle Scholar
  17. Guengerich, F. P. (1989b). Oxidation of halogenated compounds by metalloporphyrins, peroxidases, and cytochrome P-450. J. Biot. Chem. 264, 17198–17205.Google Scholar
  18. Guengerich, F. P. (1990a). Enzymatic oxidation of xenobiotic chemicals. CRC Crit.Rev. Biochem.,in press.Google Scholar
  19. Guengerich, F. P. (1990b). Low kinetic hydrogen isotope effects in the oxidation of 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylic acid dimethyl ester (nifedipine) by cytochrome P-450 enzymes are consistent with anelectron-proton-electron transfer mechanism. Chem. Res. Toxicol.,in press.Google Scholar
  20. Guengerich, F. P., and Bäcker, R. H. (1988). Cytochrome P-450-catalyzed dehydrogenation of 1,4-dihydropyridines. J. Biot. Chem. 263, 8168–8175.Google Scholar
  21. Guengerich, F. P., and Liebler, D. C. (1985). Enzymatic activation of chemicals to toxic metabolites. CRC Crit. Rev. Toxicol. 14, 259–307.CrossRefGoogle Scholar
  22. Guengerich, F. P., and Macdonald, T. L. (1984). Chemical mechanisms of catalysis by cytochromes P-450: A unified view. Acct. Chem. Res. 17, 9–16.CrossRefGoogle Scholar
  23. Guengerich, F. P., and Macdonald, T. L. (1990). Catalytic mechanism of cytochrome P-450. FASEB J,in press.Google Scholar
  24. Guengerich, F. P., Peterson, L. A., and Bäcker, R. H. (1988). Cytochrome P-450-catalyzed hydroxylation and carboxylic acid ester cleavage of Hantzsch pyridine esters. J. Biol. Chem. 263, 8176–8183.PubMedGoogle Scholar
  25. Guengerich, F. P., Willard, R. J., Shea, J. P., Richards, L. E., and Macdonald, T. L. (1984). Mechanism-based inactivation of cytochrome P-450 by heteroatomsubstituted cyclopropanes and formation of ring-opened products. J. Am. Chem. Soc. 106, 6446–6447.CrossRefGoogle Scholar
  26. Hammerich, O., and Parker, V. D. (1984). Kinetics and mechanisms of reaction of organic cation radicals in solution. Adv. Phys. Org. Chem. 20, 55–189.CrossRefGoogle Scholar
  27. Hecker, M., and Ullrich, V. (1989). On the mechanism of prostacyclin and thromboxane A2 biosynthesis. J. Biol. Chem. 264, 141–150.PubMedGoogle Scholar
  28. Kadlubar, F. F., and Hammons, G. J. (1987). The role of cytochrome P-450 in the metabolism of chemical carcinogens. In Mammalian Cytochromes P-450 (F. P.Guengerich, Ed.), Vol. II, pp. 81–130, CRC Press, Boca Raton, Florida, USA.Google Scholar
  29. Kaminsky, L. S., Dannan, G. A., and Guengerich, F. P. (1984). Composition of cytochrome P-450 isozymes from hepatic microsomes of C57BL/6 and DBA/2 mice assessed by warfarin metabolism, immunoinhibition, and immunoelectrophoresis with anti-(rat cytochrome P-450). Eur. J. Biochem. 141, 141–148.CrossRefPubMedGoogle Scholar
  30. Kronbach, T., Larabee, T. M., and Johnson, F. F. (1989). Hybrid cytochromes P450 identify a substrate binding domain in P450 IIC5 and P450 IIC4. Proc. Natl. Acad. Sci., USA 86, 8262–8265.Google Scholar
  31. Lau, S. S., Monks, T. J., and Gillette, J. R. (1984). Multiple reactive metabolites derived from bromobenzene. Drug Metab. Disp. 12, 291–296.Google Scholar
  32. Lee, J. S., Jacobsen, N. E., and Ortiz de Montellano, P. R. (1988). 4-Alkyl radical extrusion in the cytochrome P-450-catalyzed oxidation of 4-alkyl-1,4dihydropyridines. Biochemistry 27, 7703–7710.Google Scholar
  33. Liebler, D. C., and Guengerich, F. P. (1983). Olefin oxidation by cytochrome P-450: Evidence for group migration in catalytic intermediates formed with vinylidene chloride and trans-l-phenyl-1-butene. Biochemistry 22, 5482–5489.CrossRefPubMedGoogle Scholar
  34. Lindberg, R-L. P., and Negishi, M. (1989). Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature (London) 339, 632–634.Google Scholar
  35. Macdonald, T. L., Gutheim, W. G., Martin, R. B., and Guengerich, F. P. (1989). Oxidation of substituted N,N-dimethylanilines by cytochrome P-450: Estimation of the effective oxidation-reduction potential of cytochrome P-450. Biochemistry 28, 2071–2077.CrossRefPubMedGoogle Scholar
  36. Miwa, G. T., Walsh, J. S., Kedderis, G. L. and Hollenberg, P. F. (1983). The use of intramolecular isotope effects to distinguish between deprotonation and hydrogen atom abstraction mechanisms in cytochrome P-450 and peroxidase-catalyzed N-demethylation reactions. J. Biol. Chem. 258, 14445–14449.PubMedGoogle Scholar
  37. Nagata, K., Liberato, D. J., Gillette, J. R., and Sesame, H. A. (1986). An unusual metabolite of testosterone. 17b-Hydroxy-4,6-androstadiene-3-one. Drug Metab. Disp. 14, 559–565.Google Scholar
  38. Nebert, D. W., Nelson, D. R., Adesnik, M., Coon, M. J., Estabrook, R. W., Gonzalez, F. J., Guengerich, F. P., Gunsalus, I. C., Johnson, E. F., Kemper, B., Levin, W., Phillips, I. R., Sato, R., and Waterman, M. R. (1989). The P450 superfamily: Update on listing of all genes and recommended nomenclature of the chromosomal loci. DNA 8, 1–13.Google Scholar
  39. Nelson, S. D. (1982). Metabolic activation and drug toxicity. J. Med. Chem. 25, 753–765.CrossRefPubMedGoogle Scholar
  40. Nelson, S. D. and Harvison, P. J. (1987). Roles of cytochromes P-450 in chemically induced cytotoxicity. In Mammalian Cytochromes P-450 ( F. P. Guengerich, Ed.), Vol. II, pp. 19–79, CRC Press, Boca Raton, Florida, USA.Google Scholar
  41. Ortiz de Montellano, P. R. (1986). Oxygen activation and transfer. In Cytochrome P-450 ( P. R. Ortiz de Montellano, Ed.), pp. 217–271, Plenum Press, New York, USA.Google Scholar
  42. Ortiz de Montellano, P. R. (1987). Control of the catalytic activity of prosthetic heme by the structure of hemoproteins. Acct. Chem. Res. 20, 289–294.CrossRefGoogle Scholar
  43. Ortiz de Montellano, P. R. (1989). Cytochrome P-450 catalysis: radical intermediates and dehydrogenation intermediates. Trends Pharmacol. Sci. 10, 354–359.CrossRefGoogle Scholar
  44. Ortiz de Montellano, P. R., Kunze, K. L., Beilan, H. S., and Wheeler, C. (1982). Destruction of cytochrome P-450 by vinyl fluoride, fluroxene, and acetylene. Evidence for a radical intermediate in olefin oxidation. Biochemistry 21, 1331–1339.CrossRefGoogle Scholar
  45. Rettie, A. E., Rettenmeier, A. W., Howeld, W. N., and Baillie, T. A. (1987) Cytochrome P-450 catalyzed formation of D4-VPA, a toxic metabolite of valproic acid. Science (Washington, D. C.) 235, 890–893.Google Scholar
  46. Shimada, T., and Guengerich, F. P. (1989). Evidence for cytochrome P-45ONF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc. Natl. Acad. Sci. U.S.A. 86, 462–465.CrossRefPubMedGoogle Scholar
  47. Shimada, T., Iwasaki, M., Martin, M. V., and Guengerich, F. P. (1989a). Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of pro-carcinogens detected by umu gene response in Salmonella typhimurium TA1535/pSK1002. Cancer Res. 49, 3218–3228.PubMedGoogle Scholar
  48. Shimada, T., Martin, M. V., Pruess-Schwartz, D., Marnett, L. J., and Guengerich, F. P. (1989b). Roles of individual forms of human cytochrome P-450 enzymes in the bioactivation of benzo(a)pyrene, 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic aromatic hydrocarbons. Cancer Res. 49, 6304–6312.PubMedGoogle Scholar
  49. Shono, T., Toda, T., and Oshino, N. (1982). Electron transfer from nitrogen in microsomal oxidation of amine and amide. Simulation of microsomal oxidation by anodic oxidation. J. Am. Chem. Soc. 104, 2639–2641.CrossRefGoogle Scholar
  50. Traylor, T. G., and Miksztal, A. R. (1989). Alkene epoxidations catalyzed by iron(III), manganese(III), and chromium(III) porphyrins. Effects of metal and porphyrin substituents on selectivity and regiochemistry of epoxidation. J. Am. Chem. Soc. 111, 7443–7448.CrossRefGoogle Scholar
  51. Umbenhauer, D. R., Martin, M. V., Lloyd, R. S., and Guengerich, F. P. (1987). Cloning and sequence determination of a complementary DNA related to human liver microsomal cytochrome P-450 S-mephenytoin 4-hydroxylase. Biochemistry 26, 1094–1099.CrossRefPubMedGoogle Scholar
  52. Van der Zee, J., Duling, D. R., Mason, R. P., and Eling, T. E. (1989). The oxidation of N-substituted aromatic amines by horseradish peroxidase. J. Biol. Chem. 264, 19828–19836.PubMedGoogle Scholar
  53. Williams, D. E., Reed, R. L., Kedzierski, B., Guengerich, F. P., and Buhler, D. C. (1989). Bioactivation and detoxication of the pyrrolizidine alkaloid senecionine by cytochrome P-450 isozymes in rat liver. Drug Metab. Disp. 17, 387–392.Google Scholar
  54. Yamaguchi, K., Takahara, Y., and Fueno, T. (1986). Ab-initio molecular orbital studies of structure and reactivity of transition metal-oxo compounds. In App/ied Quantum Chemistry ( V. H. Smith, Jr., Ed.), pp. 155–184, D. Reidel Publishing, New York, USA.CrossRefGoogle Scholar
  55. Yoo, J-S. H., Guengerich, F. P., and Yang, C. S. (1988). Metabolism of N-nitrosodi-allcylamines in human liver microsomes. Cancer Res. 88, 1499–1504.Google Scholar
  56. Ziegler, D. M., Ansher, S. S., Nagata, T., Kadlubar, F. F., and Jakoby, W. B. (1988). N-methylation: Potential mechanism for metabolic activation of carcinogenic primary arylamines. Proc. Natl. Acad. Sci. USA 85, 2514–2517.CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • F. Peter Guengerich
    • 1
    • 2
  • Tsutomu Shimada
    • 1
    • 2
  • Arnaud Bondon
    • 1
    • 2
  • Timothy L. Macdonald
    • 3
  1. 1.Department of BiochemistryVanderbilt University School of MedicineNashvilleUSA
  2. 2.Center in Molecular ToxicologyVanderbilt University School of MedicineNashvilleUSA
  3. 3.Department of ChemistryUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations