Experimental Procedures in Electrolysis

  • Henning Lund
Part of the NATO ASI Series book series (NSSA, volume 197)


Electrolysis of organic compounds has certain inherent advantages and disadvantages. The electrolytic method presents the possibility of controlling the activity of the reagent, the electron, over a wide range by proper choice of the electrode potential. Another advantage is that the transfer of electrons can occur at low temperatures, and at a chosen pH, or under aprotic conditions, so that sensitive compounds may be oxidized or reduced under mild and well-defined conditions. Especially for large-scale preparations it is also important that the electron is a non-polluting reagent and leaves no waste products.


Sweep Rate Electrode Reaction Undivided Cell Chemically Modify Electrode Reducible Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1 a.
    H. Lund, in: “Organic Electrochemistry”, 3. ed., H. Lund and M.M. Baizer, eds., Dekker, New York, Chapter 6, pp. 243 (1990).Google Scholar
  2. 1 b.
    F. Goodridge and C.J.H. King, in: “Technique of Electroorganic Synthesis”, Part I, N.L. Weinberg, ed., Wiley, New York, pp. 7 (1974).Google Scholar
  3. 2 a.
    A.J. Bard and L.R. Faulkner, “Electrochemical Methods”, Wiley, New York (1980).Google Scholar
  4. 2 b.
    O. Hammerich and V.D. Parker, in: “Organic Electrochemistry”, 3. ed., H. Lund and M.M. Baizer, eds., Dekker, New York, Chapter 3, pp. 121 (1990).Google Scholar
  5. 2 c.
    Southampton Electrochemistry Group, “Instrumental Methods in Electrochemistry”, Wiley, New York (1985).Google Scholar
  6. 3 a.
    H. Lund, Coll.Czech. Chem. Commun. 30: 4238 (1965).Google Scholar
  7. 3 b.
    P. Fuchs, U. Hess, H.H. Holst, and H. Lund, Acta Chem. Scand. B35: 185 (1981).CrossRefGoogle Scholar
  8. 4 a.
    a.) J.-M. Savéant and K.B. Su, J. Electroanal. Chem. 196: 1 (1985).CrossRefGoogle Scholar
  9. 4 b.
    S.U. Pedersen, Acta Chem. Scand. A41:392 (1987) and references therein.Google Scholar
  10. 5.
    G. Gritzner and J. Kuta, Pure Appl. Chem. 56:461 (1984); Electrochim. Acta 29: 869 (1984).CrossRefGoogle Scholar
  11. 6 a.
    M.L. Contreras, S. Rivas, and R. Rozas, J. Electroanal. Chem. 177: 299 (1984).CrossRefGoogle Scholar
  12. 6 b.
    G.Le Guillanton, Q.T. Do, and J. Simonet, Tetrahedron Lett. 27: 2661 (1986).CrossRefGoogle Scholar
  13. 6 c.
    P. Jeroschewski, W. Ruth, B. Stübing, and H. Berge, J. Prakt. Chem. 324: 787 (1982).CrossRefGoogle Scholar
  14. 6 d.
    G. Merkel, H. Berge, and P. Jeroschewski, J. Pract. Chem. 326: 467 (1984).CrossRefGoogle Scholar
  15. 7 a.
    O. Sock, M. Troupe], and J. Perichon, Tetrahedron Lett. 26: 1509 (1985).CrossRefGoogle Scholar
  16. 7 b.
    J.C. Polest, J.Y. Nedelec, and J. Perichon, Tetrahedron Lett. 28: 1885 (1987).CrossRefGoogle Scholar
  17. 7 c.
    S. Gambino, G. Filardo, and G. Silvestri, J. Appl. Electrochem. 12: 549 (1982).CrossRefGoogle Scholar
  18. 8 a.
    A. Diaz, in: “Organic Electrochemistry”, 3rd ed., H. Lund and M.M. Baizer, eds., Dekker, New York, Chapter 33, pp. 1363 (1990).Google Scholar
  19. 8 b.
    M.M. Baizer, in: “Organic Electrochemistry”, 3rd. ed., H. Lund and M.M. Baizer, eds., Dekker, New York, Chapter 30, pp. 1265 (1990).Google Scholar
  20. 9.
    Pletcher, “Industrial Electrochemistry”, Chapman and Hall, London (1982).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Henning Lund
    • 1
  1. 1.Department of Organic ChemistryUniversity of ÅrhusÅrhus CDenmark

Personalised recommendations