Thermochemistry of Sulfur-Centered Intermediates

  • David Griller
  • José A. Martinho Simões
  • Daniel D. M. Wayner
Part of the NATO ASI Series book series (NSSA, volume 197)


Sulfur-centered intermediates play important roles in the chemistry of coal, oil, atmospheric pollution and biological systems. If we are to fully understand this chemistry and to arm ourselves with some predictive power about the behavior of transient sulfur-centered species, we need to have reliable thermochemical data to guide us.


Electron Affinity Thermochemical Data Bond Dissociation Enthalpy Appearance Energy Thermochemical Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.W. Benson, Chem. Reviews 78: 23 (1978).CrossRefGoogle Scholar
  2. 2.
    J.D. Cox and G. Pilcher, “Thermochemistry of Organic and Organometallic Compounds”, Academic Press, London (1970).Google Scholar
  3. 3.
    J.B. Pedly, R.D. Naylor, and S.P. Kirby, “Thermochemical Data of Organic Compounds”, Chapman and Hall, London (1986).CrossRefGoogle Scholar
  4. 4.
    G. Waddington, S. Sunner, and W.N. Hubbard, in: “Experimental Thermochemistry”, Vol. 1, F.D. Rossini, ed., Interscience, New York, Chapter 7 (1956).Google Scholar
  5. 5.
    A.J. Head and W.D. Good, in: Experimental Chemical Thermodynamics Vol. 1, Combustion Calorimetry, S.Sunner and M. Mansson, Pergamon, Oxford, Chapter 9 (1979).Google Scholar
  6. 6.
    S.W. Benson, “Thermochemical Kinetics”, Wiley, New York (1976).Google Scholar
  7. 7.
    R.J. Hwang and S.W. Benson, Int. J. Chem. Kinet. 11: 579 (1979).CrossRefGoogle Scholar
  8. 8.
    B.K. Janousek, K.J. Reed, and J.I. Brauman, J. Am. Chem. Soc. 102: 3125 (1980).CrossRefGoogle Scholar
  9. 9.
    D.D. Wagman, W.H: Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, and R.L. Nuttall, J. Phys. Chem. Ref. Data. 11, Suppl. No. 2 (1982).Google Scholar
  10. 10.
    D.F. McMillen and D.M. Golden, Ann. Rev. Phys. Chem. 33: 493 (1982).CrossRefGoogle Scholar
  11. 11.
    J.C. Traeger, Org. Mass. Spectrom. 19: 514 (1984).CrossRefGoogle Scholar
  12. 12.
    M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud, J. Phys. CHem. Ref. Data 14, Suppl. No. 1 (1985).Google Scholar
  13. 13.
    S.G. Lias, J.E. Bartmess, J.F. Liebman, J.L. Holmes, R.D. Levin, and W.G. Mallard, J. Phys. Chem. Ref. Data 17, Suppl. No. 1 (1988).Google Scholar
  14. 14.
    L.G.S. Shum, S.W. Benson, Int. J. Chem. Kinet. 15: 433 (1983).CrossRefGoogle Scholar
  15. 15.
    D.H. Fine and J.B. Westmore, Can. J. Chem. 48:395 (1970) and refs. cited therein.Google Scholar
  16. 16.
    A.J. Colussi and S.W. Benson, Int. J. Chem. Kinet. 9: 295 (1977).CrossRefGoogle Scholar
  17. 17.
    J.A. Hawari, D. Griller, and F.P. Lossing, J. Am. Chem. Soc. 108: 3273 (1986).CrossRefGoogle Scholar
  18. 18.
    D.Griller, J.M. Kanabus-Kaminska, and A. Maccoll, J. Mol. Structure (Theochem.) 163: 125 (1988).CrossRefGoogle Scholar
  19. 19.
    Y.-R. Luo and S.W. Benson, J. Phys. Chem. 92: 5255 (1988).CrossRefGoogle Scholar
  20. 20.
    J.M. Kanabus-Kaminska, B.C. Gilbert, and D. Griller, J. Am. Chem. Soc. 111:3311 (1989) and refs. cited therein.Google Scholar
  21. 21.
    W. Karmann, G. Meissner, and A. Henglein, Z. Naturforsch. 22: 274 (1967).Google Scholar
  22. 22.
    J.E. Packer, in: “The Chemistry of The Thiol Group”, Part 2, S. Patai, ed., Wiley, London (1974).Google Scholar
  23. 23.
    D.D.M. Wayner, J.J. Dannenberg, and D. Griller, Chem. Phys. Lett. 131: 189 (1986).CrossRefGoogle Scholar
  24. 24.
    D. Griller, J.A. Martinho Simóes, P. Mulder, B.A. Sim, and D.D.M. Wayner, J. Am. Chem. Soc. 11: 7872 (1989).CrossRefGoogle Scholar
  25. 25.
    J.Q. Chambers, in: Encyclopedia of Electrochemistry of the Elements Vol.12,A.J. Bard and H.Lund,Marcel Dekker,New York (1978).Google Scholar
  26. 26.
    P.S. Surdhar and D.A. Armstrong, J. Phys. Chem. 90: 5915 (1986).CrossRefGoogle Scholar
  27. 27.
    P.S. Surdhar and D.A. Armstrong, J. Phys. Chem. 91: 6532 (1987).CrossRefGoogle Scholar
  28. 28.
    P.D. Pacey and J.H. Wimalasena, J. Phys. Chem. 88: 5657 (1984).CrossRefGoogle Scholar
  29. 29.
    M. Brouard, P.D. Lightfoot, and M.J. Pilling, J. Phys. Chem. 90: 445 (1986).CrossRefGoogle Scholar
  30. 30.
    A.L. Castelhano, P.R. Marriot, and D. Griller, J. Am. Chem. Soc. 103: 4262 (1981).CrossRefGoogle Scholar
  31. 31.
    A.L. Castelhano and D. Griller, J. Am. Chem. Soc. 104: 3655 (1982).CrossRefGoogle Scholar
  32. 32.
    J.J. Russell, J.A. Seetula, and D. Gutman, J. Am. Chem. Soc. 110: 3092 (1988).CrossRefGoogle Scholar
  33. 33.
    J.L. Holmes, F.P. Lossing, and A. Maccoll, J. Am. Chem. Soc. 110: 7339 (1988).CrossRefGoogle Scholar
  34. 34.
    S.S. Parmar and S.W. Benson, J. Am. Chem. Soc. 111: 57 (1989).CrossRefGoogle Scholar
  35. 35.
    W.TsangJ.Am.Chem.Soc.107:2872 (1985)Google Scholar
  36. 36.
    C.E. Canosa and R.M. Marshall, Int. J. Chem. Kinet. 13: 303 (1981).CrossRefGoogle Scholar
  37. 37.
    G.H. Kruppa and J.L. Beauchamp, J. Am. Chem. Soc. 108: 2162 (1986).CrossRefGoogle Scholar
  38. 38.
    K. Hayashibara, G.H. Kruppa, and J.L. Beauchamp J. Am. Chem. Soc.108:5441 1986Google Scholar
  39. 39.
    J.J. Russell, J.A. Seetula, R.S. Timonen, D. Gutman, and D.F. Nava J. Am. Chem. Soc.110:3084 1988Google Scholar
  40. 40.
    J.H. Kiefer, L.J. Mizerka, M.R. Patel, and H.-C. Wei J. Phys. Chem. 89:20131985Google Scholar
  41. 41.
    Y. Malinovich and C. Lifshitz, J. Phys. Chem. 90: 2200 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • David Griller
    • 1
  • José A. Martinho Simões
    • 1
    • 2
  • Daniel D. M. Wayner
    • 1
  1. 1.Division of ChemistryNational Research Council of CanadaOttawaCanada
  2. 2.Instituto Superior TécnicoCentro de Química Estrutural, Complexo ILisboa CodexPortugal

Personalised recommendations