The Biological Actions of the Glutathione/Disulfide System: An Overview

  • Marcello Quintiliani
Part of the NATO ASI Series book series (NSSA, volume 197)


Glutathione (GSH) and its disulfide (GSSG) have been the object of considerable interest, during the last ten or fifteen years, on the part of investigators acting in many different areas of biological research. Such interest is justified by the multifunctional properties of this tripeptide, involving, for example, metabolism of intermediates, enzyme mechanisms, biosynthesis of macromolecules, drug metabolism, radiation, cancer, oxygen toxicity, transport, immune phenomena, endocrinology, environmental toxins, and aging.


Superoxide Cysteine Adenosine Selenium Adduct 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.S. Kosower, and E.M. Kosower, Int. Rev. Cytol. 54: 109 (1978).CrossRefGoogle Scholar
  2. 2.
    D.M. Ziegler, Ann. Rev. Biochem. 54: 305 (1985).CrossRefGoogle Scholar
  3. 3.
    O.F. Nygaard and M.G. Simic, eds., “Radioprotectors and Anticarcinogens” Academic Press, New York and London (1983).Google Scholar
  4. 4.
    A. Larsson, S. Orrenius, A. Holmgren, and B. Mannervik, eds., “Functions of Glutathione: Biochemical, Physiological, Toxicological, and Clinical Aspects.” Raven Press, New York (1983).Google Scholar
  5. 5.
    A. Meister, A., Glutamate, Glutamine, Glutathione and Related Compounds in: “Methods in Enzymology”, S.P. Colowick and N.O. Kaplan, eds., Vol. 113, Academic Press, Inc., New York and London (1985)Google Scholar
  6. 6.
    A. Meister and M.E. Anderson, Ann. Rev. Biochem. 52: 711 (1983).CrossRefGoogle Scholar
  7. 7.
    B. Mannervick and U.H. Danielson CRC Crit. Rev. Biochem. 23: 283 (1988).CrossRefGoogle Scholar
  8. 8.
    J.B. Mitchell, J.A. Cook, W. DeGraff, E. Glatstein, and A. Russo, Int. J. Radiat. Oncol. Biol. Phys. 16: 1289 (1989).CrossRefGoogle Scholar
  9. 9.
    B. Halliwell and J.M.C. Gutteridge, “Free Radicals in Biology and Medicine.” Clarendon Press, Oxford (1985).Google Scholar
  10. 10.
    H. Sies, “Oxidative Stress”, Academic Press, London (1985).Google Scholar
  11. 11.
    C. von Sonntag, “The Chemical Basis of Radiation Biology”, Taylor and Francis, London (1987).Google Scholar
  12. 12.
    M. Lal, Can. J. Chem. 54: 1092 (1976).CrossRefGoogle Scholar
  13. 13.
    M. Quintiliani, Int. J. Radiat. Biol. 50: 573 (1986).CrossRefGoogle Scholar
  14. 14.
    J.E. Packer, The radiation chemistry of thiols, in: “The Chemistry of the Thiol Group”, S. Patai, ed., John Wiley and Sons, London (1974).Google Scholar
  15. 15.
    M. Quintiliani, R. Badiello, M. Tamba, and G. Gorin, Radiation chemical basis for the role of glutathione in cellular radiation sensitivity, in: “Modification of Radiosensitivity in Biological Systems”, IAEA, Vienna, pp. 29 (1976).Google Scholar
  16. 16.
    M.Z. Baker, R. Badiello, M. Tamba, M. Quintiliani, and G. Gorin, Int. J. Radiat. Biol. 41: 595 (1982).CrossRefGoogle Scholar
  17. 17.
    M. Tamba, G. Simone, and M. Quintiliani, Int. J. Radiat. Biol. 50: 595 (1986).CrossRefGoogle Scholar
  18. 18.
    J. Mönig, K.-D. Asmus, L.G. Forni, and R.L. Willson, Int. J. Radial. Biol. 52: 589 (1987).CrossRefGoogle Scholar
  19. 19.
    M.D. Sevilla, M. Yan, and D. Becker, D., Biochem. Biophys. Res. Commun. 155: 405 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Marcello Quintiliani
    • 1
  1. 1.Institute of Biomedical Technologies (CNR)RomaItaly

Personalised recommendations