Advertisement

Sulphur Compounds and “Chemical Repair” in Radiation Biology

  • Clemens von Sonntag
  • Heinz-Peter Schuchmann
Part of the NATO ASI Series book series (NSSA, volume 197)

Abstract

When living cells are subjected to ionizing radiation, several functions may be impaired. Although the metabolic functions may continue, the cell may no longer be capable of propagation. This effect is called reproductive cell death. It is the most commonly-determined biological endpoint. On the other hand, the cell may still be able to divide, but some of the information of its genome is altered, a mutation has occurred. At much higher doses than required for these two effects to occur, the functioning of the cell may come to a complete stand-still (metabolic cell death). It is generally accepted that for the two first-mentioned events the essential target is the DNA1 In fact, it is observed that even one (unrepaired) DNA break means already reproductive cell death. The membrane has occasionally been discussed as an alternative important target, and it appears to be certain that it contributes to the metabolic cell death.1

Keywords

Base Radical Peroxyl Radical Pulse Radiolysis Base Release Strand Breakage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. von Sonntag, “The Chemical Basis of Radiation Biology”, Taylor and Francis, London (1987).Google Scholar
  2. 2.
    T. Alper, “Cellular Radiobiology”, Cambridge University Press, Cambridge (1979).Google Scholar
  3. 3.
    M. Edgren, T. Nishidai, O.C.A. Scott, and R. Revesz, Int. J. Radiat. Biol. 47: 463 (1985).Google Scholar
  4. 4.
    D. Schulte-Frohlinde, Free Radical Res. Commun. 6: 181 (1989).CrossRefGoogle Scholar
  5. 5.
    L. Revesz, Int. J. Radiat. Biol. 47: 361 (1985).Google Scholar
  6. 6.
    R.L. Willson, Int. J. Radiat. Biol. 17: 349 (1970).CrossRefGoogle Scholar
  7. 7.
    M. Isildar, M.N. Schuchmann, D. Schulte-Frohlinde, and C. von Sonntag, Int. J. Radiat. Biol. 41: 525 (1982).CrossRefGoogle Scholar
  8. 8.
    G.E. Adams, G.S. McNaughton, and B.D. Michael, Trans. Faraday Soc. 64: 902 (1968).CrossRefGoogle Scholar
  9. 9.
    G. Nucifora, B. Smaller, R. Remko, and E.C. Avery, Radiat. Res. 49: 96 (1972).CrossRefGoogle Scholar
  10. 10.
    S.A. Grachev, E.V. Kropachev, and G.I. Litvyakova, Izv. Akad. Nauk SSSR, Ser. Khim. 2746 (1988).Google Scholar
  11. 11.
    P. O’Neill, Radiat. Res. 96: 198 (1983).CrossRefGoogle Scholar
  12. 12.
    M.S. Akhlaq, S. Al-Baghdadi, and C. von Sonntag, Carbohydr. Res. 164: 71 (1987).CrossRefGoogle Scholar
  13. 13.
    E. Bothe and D. Schulte-Frohlinde, Z. Naturforsch. 37c: 1191 (1982).Google Scholar
  14. 14.
    D.G.E. Lemaire, E. Bothe, and D. Schulte-Frohlinde, Int. J. Radiat. Biol. 45: 351 (1984).CrossRefGoogle Scholar
  15. 15.
    K. Hildenbrand and D. Schulte-Frohlinde, Free Rad. Res. Commun. 6: 137 (1989).CrossRefGoogle Scholar
  16. 16.
    M.S. Akhlaq, H.-P. Schuchmann, and C. von Sonntag, Int. J. Radiat. Biol. 51: 91 (1987).CrossRefGoogle Scholar
  17. 17.
    D.G.E. Lemaire, E. Bothe, and D. Schulte-Frohlinde, Int. J. Radiat. Biol. 51: 319 (1987).CrossRefGoogle Scholar
  18. 18.
    D.J. Deeble and C. von Sonntag, Int. J. Radiat. Biol. 46: 247 (1984).CrossRefGoogle Scholar
  19. 19.
    D.J. Deeble, D. Schulz, and C. von Sonntag, Int J. Radiat. Biol. 49: 915 (1986).CrossRefGoogle Scholar
  20. 20.
    D.J. Deeble and C. von Sonntag, Int. J. Radiat. Biol. 49: 927 (1986).CrossRefGoogle Scholar
  21. 21.
    E. Bothe, G.A. Qureshi, and D. Schulte-Frohlinde, Z.Naturforsch. 38c: 1030 (1983).Google Scholar
  22. 22.
    M. Adinarayana, E. Bothe, and D. Schulte-Frohlinde, Int J. Radiat. Biol. 54: 723 (1988).CrossRefGoogle Scholar
  23. 23.
    A.M. Onal, D.G.E. Lemaire, E. Bothe, and D. Schulte-Frohlinde, Int. J. Radiat. Biol. 53: 787 (1988).CrossRefGoogle Scholar
  24. 24.
    S. Zheng, G.L. Newton, G. Gonick, R.C. Fahey, and J.F. Ward, Radiat. Res. 114: 11 (1988).CrossRefGoogle Scholar
  25. 25.
    D. Schulte-Frohlinde, G. Behrens, and A. Onal, Int. J. Radiat. Biol. 50: 103 (1986).CrossRefGoogle Scholar
  26. 26.
    E. Bothe, G. Behrens, E. Böhm, B. Sethuram, and D. Schulte-Frohlinde, Int. J. Radiat. Biol. 49: 57 (1986).CrossRefGoogle Scholar
  27. 27.
    W.A. Priitz and H. Mönig, Int. J. Radiat. Biol. 52: 677 (1987).CrossRefGoogle Scholar
  28. 28.
    W.A. Prütz, Int. J. Radiat. Biol. 56: 21 (1989).CrossRefGoogle Scholar
  29. 29.
    M. Quintiliani, Int. J. Radiat. Biol. 50: 573 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Clemens von Sonntag
    • 1
  • Heinz-Peter Schuchmann
    • 1
  1. 1.Max-Planck-Institut für StrahlenchemieMülheim a.d. RuhrF.R. Germany

Personalised recommendations