Advertisement

Free Radical Transfer Involving Sulphur Peptide Functions

  • Walter A. Prütz
Part of the NATO ASI Series book series (NSSA, volume 197)

Abstract

Many biological processes involve series of electron transfer reactions through protein assemblies. Examples of such controlled biological electron transfer chains are the oxidative phosphorylation in mitochondria, and the photosynthesis in chloroplasts. Sulphur peptide functions commonly serve to stabilize, by disulphide bonds, the three-dimensional protein structure, and to hold certain reaction centers in position; for instance, in ferricytochrome c the active heme group is covalently bound by two cysteines and additional coordinative binding of the central iron is provided by a methionine and a histidine group, and in plastocyanine (an electron transfer protein in photosynthesis) the active Cu(II) center involves one cysteine, one methionine and two histidines as ligands. The specific structures of electron transfer pro­teins, and particularly the environment around the active sites, are thought to play a perti­nent role in directing the electron transfer process, and various possible mechanisms of elec­tron transfer through the protein matrix have been discussed.

Keywords

Electron Transfer Pulse Radiolysis Radical Transfer Electron Transfer Protein Sulphur Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.R. Moore and R.J.P. Williams, Coord. Chem. Rev. 18: 125 (1976).CrossRefGoogle Scholar
  2. 2.
    S.S. Isied, Prog. Inorg. Chem. 32: 443 (1984).CrossRefGoogle Scholar
  3. 3.
    M.H. Klapper and M. Faraggi, Quart. Rev. Biophys. 12: 465 (1979).CrossRefGoogle Scholar
  4. 4.
    R.V. Bensasson, E.J. Land, and T.G. Truscott, “Flash Photolysis and Pulse Radiolysis”, Pergamon Press, Oxford (1983).Google Scholar
  5. 5.
    W. Garrison, Chem. Rev. 87: 381 (1987).CrossRefGoogle Scholar
  6. 6.
    W.A. Prütz, in: “Radiation Research”, Vol. 2 (8th International Congress of Radiation Research, Edinburgh), E.M. Fielden, J.F. Fowler, J.H. Hendry, and D. Scott, eds., Taylor & Francis, London, p. 134 ff. (1987).Google Scholar
  7. 7.
    M. Bonifacic and K.-D. Asmus, Int. J. Radiai. Biol. 46: 35 (1984).CrossRefGoogle Scholar
  8. 8.
    M. Faraggi, J.P. Steiner, and M.H. Klapper, Biochem. 24: 3273 (1985).CrossRefGoogle Scholar
  9. 9.
    K. Bobrowski, K.L. Wierzchowski, J. Holcman, and M. Ciurak, Studia biophys. 122: 23 (1987).Google Scholar
  10. 10.
    J. Butler, E.J. Land, W.A. Prütz, and A.J. Swallow, Biochim. Biphys. Acta 705: 150 (1982).CrossRefGoogle Scholar
  11. 11.
    W.A. Priitz, J. Butler, E.J. Land, and A.J. Swallow, Int. J. Radiat. Biol. 55: 539 (1989).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Walter A. Prütz
    • 1
  1. 1.Institut für Biophysik und StrahlenbiologieUniversität FreiburgFreiburgF. R. Germany

Personalised recommendations