Advertisement

Redox Systems with Sulphur-Centered Species

  • David A. Armstrong
Part of the NATO ASI Series book series (NSSA, volume 197)

Abstract

The reactions discussed below have been chosen to illustrate the potential behaviour of thiyl radicals, disulphide radical anions and other sulphur-containing reactive intermediates, as oxidizing and reducing agents in inorganic, organic and biological systems. The influence of sulphur-containing species on oxidation-reduction reactions has been recognized for many years. Since the first half of this century the chemical and petroleum industries have used mercaptans for the protection of petroleum products (1932) and the stabilization of chlorinated hydrocarbons, such as carbon tetrachloride (1933), against autoxidation.1 The fundamental role of RSH appears to be that of a scavenger of oxygen and/or an inhibitor of oxidation catalysts.

Keywords

Lipoic Acid Bond Dissociation Energy Charge Transfer Transition Pulse Radiolysis Sulphydryl Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.E. Reid, Organic Chemistry of Bivalent Sulphur, Chemical Publishing Co., New York (1958).Google Scholar
  2. 2.
    P. Wardman, Reduction Potentials of One-electron Couples Involving Free Radicals in Aqueous Solutions, J. Phys. Chem. Ref. Data18: 1637 (1989).Google Scholar
  3. 3 a.
    G.E. Adams, G.S. McNaughton, and B.D. Michael, Trans. Faraday Soc. 64: 902 (1968).CrossRefGoogle Scholar
  4. 3 b.
    G.E. Adams, J.E. Aldrich, R.H. Bisby, R.B. Cundall, J.L. Redpath, and R.L. Wilson, Radiation Research 49: 278 (1972).CrossRefGoogle Scholar
  5. 4.
    A. Treinin and E. Hayon, J. Am. Chem. Soc. 97: 1716 (1975).CrossRefGoogle Scholar
  6. 5 a.
    M.S. Akhlaq, H.-P. Schuchmann, and C. von Sonntag, Int. J. Radial. Biol. 51: 91 (1987).CrossRefGoogle Scholar
  7. 5 b.
    A.J. Elliot, A.S. Simsons, and F.C. Sopchyshyn, Radiat. Phys. Chem. 23: 377 (1984).Google Scholar
  8. 6 a.
    L.G. Forni and R.L. Willson, Biochem. J. 240: 897 (1986).Google Scholar
  9. 6 b.
    L.G. Forni and R.L. Willson, Biochem. J. 240: 905 (1986).Google Scholar
  10. 7 a.
    P.S. Surdhar and D.A. Armstrong, J. Phys. Chem. 89:5514 (1985).CrossRefGoogle Scholar
  11. 7 b.
    Zhennan Wu, R. Ahmad, and D.A. Armstrong, to be published.Google Scholar
  12. 8 a.
    A.-D. Leu and D.A. Armstrong, J. Phys. Chem. 90: 1449 (1986).CrossRefGoogle Scholar
  13. 8 b.
    S.P. Mezyk and D.A. Armstrong, Can. J. Chem. 67: 736 (1989).CrossRefGoogle Scholar
  14. 8 c.
    S.P. Mezyk and D.A. Armstrong, to be published.Google Scholar
  15. 9 a.
    R. Ahmad and D.A. Armstrong, Can. J. Chem. 62: 171 (1984).CrossRefGoogle Scholar
  16. 9 b.
    P.S. Surdhar and D.A. Armstrong, Can. J. Chem. 63: 3411 (1985).CrossRefGoogle Scholar
  17. 9 c.
    P.S. Surdhar and D.A. Armstrong, Int. J. Radiai. Biol. 52: 419 (1987).CrossRefGoogle Scholar
  18. 10 a.
    P.C. Chan and B.H.J. Bielski, J. Am. Chem. Soc. 95: 5504 (1973).CrossRefGoogle Scholar
  19. 10 b.
    J.P. Barton and J.E. Packer, Int. J. Radiai. Phys. Chem. 2: 159 (1970).CrossRefGoogle Scholar
  20. 11.
    N.N. Lichtin, J. Ogden and G. Stein, Biochem. Biophys. Acta 263: 14 (1972).Google Scholar
  21. 12.
    D.A. Armstrong and J.D. Buchanan, Photochem. Photobiol. 28: 743 (1978).CrossRefGoogle Scholar
  22. 13.
    M. Lal, W.S. Lin, G.M. Gaucher, and D.A. Armstrong, Int. J. Radiat. Biol. 28: 549 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • David A. Armstrong
    • 1
  1. 1.Department of ChemistryUniversity of CalgaryCalgaryCanada

Personalised recommendations