Advertisement

The Synthesis and Metal Complexes of Sulfur-Containing Models for Nitrogenase Enzymes

  • Eric Block
  • Michael Gernon
  • Jon Zubieta
Part of the NATO ASI Series book series (NSSA, volume 197)

Abstract

Recently there has been a great deal of interest in synthetically modelling the active site of the enzyme nitrogenase.1 Nitrogenase is a member of a class of metalloenzymes which bind molybdenum at their active sites. The molybdoenzymes are responsible for many important naturally occurring redox processes. In the case of nitrogenase the redox process is the reductive fixation of atmospheric dinitrogen, N2. In nitrogen fixation, N2 is first bound to the active site of nitrogenase and then through a series of unknown intermediates reduced to ammonia. The exact structure of the active site of nitrogenase is not known, but EXAFS data shows it to consist of a cluster of approximate composition MoFe(6–8)S(4–8). 2 The molybdenum atom is believed to be the site where N2 is bound, but the precise nature of the coordination is not known.1 It is hoped that a good synthetic model of the active site will show the mode of nitrogen binding.

Keywords

Molybdenum Atom Mercapto Group Molybdenum Complex Phosphorus Trichloride Active Site Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.J.N. Burgmayer and E.I. Stiefel, J. Chem. Ed. 62: 943 (1985).CrossRefGoogle Scholar
  2. 2.
    S.P. Cramer, K.O. Hodgson, W.O. Gillum, and L.E. Mortenson, J. Am. Chem. Soc. 100: 3398 (1978).CrossRefGoogle Scholar
  3. 3.
    R.H. Holm, Chem. Soc. Rev. 10: 455 (1981).CrossRefGoogle Scholar
  4. 4a.
    A. Muller, E. Diemann, R. Jostes, and E. Bogge, Angew. Chem. Int. Ed. Engl. 20: 934 (1981).CrossRefGoogle Scholar
  5. 4b.
    T.D.P. Stack, M.J. Carney, and R.H. Holm, J. Am. Chem. Soc. 111: 1670 (1989).CrossRefGoogle Scholar
  6. 5.
    J. Chatt, J.R. Dilworth, and R.L. Richards, Chem. Rev. 78: 589 (1978).CrossRefGoogle Scholar
  7. 6.
    T.A. George and R.C. Tisdale, J. Am. Chem. Soc. 107: 5157 (1985).CrossRefGoogle Scholar
  8. 7.
    D. Sellman and W. Weiss, Angew. Chem. Int. Ed. Eng. 17: 269 (1978).CrossRefGoogle Scholar
  9. 8.
    P.J. Blower and J.R. Dilworth, Coord. Chem. Rev. 76: 121 (1987).CrossRefGoogle Scholar
  10. 9.
    I.G. Dance, Polyhedron 5: 1037 (1986).CrossRefGoogle Scholar
  11. 10.
    J.R. Dilworth, J. Hutchinson, and J.A. Zubieta, J. Chem. Soc. Chem. Commun. 1034 (1983).Google Scholar
  12. 11.
    N. Ueyana, H. Zaima, and A. Nakamura, Chem. Lett. 1481 (1985).Google Scholar
  13. 12.
    P.J. Blower, P.T. Bishop, J.R. Dilworth, T.C. Hsieh, J. Hutchinson, T. Nicolson, and J. Zubieta, Inorg. Chim. Acta 101: 63 (1985).CrossRefGoogle Scholar
  14. 13.
    C.D. Gutsche, Acc. Chem. Res. 16:161 (1983); C.D. Gutsche, Top. Curr. Chem. 51:742 (1986) and references therein.Google Scholar
  15. 14.
    M.M. Olmstead, G. Sigel, H. Hope, X. Xu, and P.P. Power, J. Am. Chem. Soc. 107: 8087 (1985).CrossRefGoogle Scholar
  16. 15.
    H.W. Gschwend and H.R. Rodriguez, Org. React. 26: 1 (1979).Google Scholar
  17. 16a.
    E. Block and M. Aslam, J. Am. Chem. Soc. 107: 6729 (1985).CrossRefGoogle Scholar
  18. 16b.
    E. Block and M. Aslam, Tetrahedron 44: 281 (1988).CrossRefGoogle Scholar
  19. 17.
    K. Tang, M. Aslam, E. Block, T. Nicholson, and J. Zubieta, J. Inorg. Chem. 26: 1488 (1987).CrossRefGoogle Scholar
  20. 18.
    B.-K. Boo, E. Block, H. Kang, S. Liu, and J. Zubieta, Polyhedron 7: 1397 (1988).CrossRefGoogle Scholar
  21. 19.
    P. Beak and P.D. Becker, J. Org. Chem. 47: 3855 (1982).CrossRefGoogle Scholar
  22. 20.
    A.R. Katritzky, J.M. Aurrecoechea, and L.M. Vazquez de Miguel, J. Chem. Soc. Perkin Trans. I769 (1987).CrossRefGoogle Scholar
  23. 21.
    A.I. Meyers and M.E. Ford, J. Org. Chem. 41: 1735 (1976).CrossRefGoogle Scholar
  24. 22.
    C.R. Johnson and K. Tanaka, Synthesis 413 (1976).Google Scholar
  25. 23.
    J.M. Berg and R.H. Holm, J. Am. Chem. Soc. 107: 917, 925 (1985).CrossRefGoogle Scholar
  26. 24.
    G.H. Posner and K.A. Canella, J. Am. Chem. Soc. 107: 2571 (1985).CrossRefGoogle Scholar
  27. 25.
    G.D. Figuly, Ph.D. Thesis, University of Illinois-Urbana (1981).Google Scholar
  28. 26a.
    G.D. Figuly, C.K. Loop, and J.C. Martin, J. Am. Chem. Soc. 111: 654 (1989).CrossRefGoogle Scholar
  29. 26b.
    E. Block, V. Eswarakrishnan, M. Gernon, G. Ofori-Okai, C. Saha, K. Tang, and J. Zubieta, J. Am. Chem. Soc. 111: 658 (1989).CrossRefGoogle Scholar
  30. 26c.
    K. Smith, C.M. Lindsay, and G.J. Pritchard, J. Am. Chem. Soc. 111: 665 (1989).CrossRefGoogle Scholar
  31. 27a.
    E. Block, M. Gernon, H. Kang, G. Ofori-Okai, and J. Zubieta, Inorg. Chem. 28: 1263 (1989).CrossRefGoogle Scholar
  32. 27b.
    E. Block, H. Kang, G. Ofori-Okai, and J. Zubieta, Inorg. Chim. Acta 156: 27 (1989).CrossRefGoogle Scholar
  33. 28.
    E. Block, G. Ofori-Okai, and J. Zubieta, J. Am. Chem. Soc. 111: 2327 (1989).CrossRefGoogle Scholar
  34. 29.
    E. Block, H. Kang, G. Ofori-Okai, and J. Zubieta, Inorg. Chim. Acta 166: 155 (1989).CrossRefGoogle Scholar
  35. 30.
    E. Block, M. Gernon, H. Kang, and J. Zubieta, Angew. Chem. Int. Edn. Engl. 27: 1342 (1988).CrossRefGoogle Scholar
  36. 31.
    E. Block, M. Gernon, H. Kang, S. Liu, and J. Zubieta, Inorg. Chim. Acta 167: 143 (1990).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Eric Block
    • 1
  • Michael Gernon
    • 1
  • Jon Zubieta
    • 1
  1. 1.Department of ChemistryState University of New York at AlbanyAlbanyUSA

Personalised recommendations