Skip to main content

The Synthesis and Metal Complexes of Sulfur-Containing Models for Nitrogenase Enzymes

  • Chapter
Sulfur-Centered Reactive Intermediates in Chemistry and Biology

Part of the book series: NATO ASI Series ((NSSA,volume 197))

  • 306 Accesses

Abstract

Recently there has been a great deal of interest in synthetically modelling the active site of the enzyme nitrogenase.1 Nitrogenase is a member of a class of metalloenzymes which bind molybdenum at their active sites. The molybdoenzymes are responsible for many important naturally occurring redox processes. In the case of nitrogenase the redox process is the reductive fixation of atmospheric dinitrogen, N2. In nitrogen fixation, N2 is first bound to the active site of nitrogenase and then through a series of unknown intermediates reduced to ammonia. The exact structure of the active site of nitrogenase is not known, but EXAFS data shows it to consist of a cluster of approximate composition MoFe(6–8)S(4–8). 2 The molybdenum atom is believed to be the site where N2 is bound, but the precise nature of the coordination is not known.1 It is hoped that a good synthetic model of the active site will show the mode of nitrogen binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.J.N. Burgmayer and E.I. Stiefel, J. Chem. Ed. 62: 943 (1985).

    Article  CAS  Google Scholar 

  2. S.P. Cramer, K.O. Hodgson, W.O. Gillum, and L.E. Mortenson, J. Am. Chem. Soc. 100: 3398 (1978).

    Article  CAS  Google Scholar 

  3. R.H. Holm, Chem. Soc. Rev. 10: 455 (1981).

    Article  Google Scholar 

  4. A. Muller, E. Diemann, R. Jostes, and E. Bogge, Angew. Chem. Int. Ed. Engl. 20: 934 (1981).

    Article  Google Scholar 

  5. T.D.P. Stack, M.J. Carney, and R.H. Holm, J. Am. Chem. Soc. 111: 1670 (1989).

    Article  CAS  Google Scholar 

  6. J. Chatt, J.R. Dilworth, and R.L. Richards, Chem. Rev. 78: 589 (1978).

    Article  CAS  Google Scholar 

  7. T.A. George and R.C. Tisdale, J. Am. Chem. Soc. 107: 5157 (1985).

    Article  CAS  Google Scholar 

  8. D. Sellman and W. Weiss, Angew. Chem. Int. Ed. Eng. 17: 269 (1978).

    Article  Google Scholar 

  9. P.J. Blower and J.R. Dilworth, Coord. Chem. Rev. 76: 121 (1987).

    Article  CAS  Google Scholar 

  10. I.G. Dance, Polyhedron 5: 1037 (1986).

    Article  Google Scholar 

  11. J.R. Dilworth, J. Hutchinson, and J.A. Zubieta, J. Chem. Soc. Chem. Commun. 1034 (1983).

    Google Scholar 

  12. N. Ueyana, H. Zaima, and A. Nakamura, Chem. Lett. 1481 (1985).

    Google Scholar 

  13. P.J. Blower, P.T. Bishop, J.R. Dilworth, T.C. Hsieh, J. Hutchinson, T. Nicolson, and J. Zubieta, Inorg. Chim. Acta 101: 63 (1985).

    Article  CAS  Google Scholar 

  14. C.D. Gutsche, Acc. Chem. Res. 16:161 (1983); C.D. Gutsche, Top. Curr. Chem. 51:742 (1986) and references therein.

    Google Scholar 

  15. M.M. Olmstead, G. Sigel, H. Hope, X. Xu, and P.P. Power, J. Am. Chem. Soc. 107: 8087 (1985).

    Article  CAS  Google Scholar 

  16. H.W. Gschwend and H.R. Rodriguez, Org. React. 26: 1 (1979).

    CAS  Google Scholar 

  17. E. Block and M. Aslam, J. Am. Chem. Soc. 107: 6729 (1985).

    Article  CAS  Google Scholar 

  18. E. Block and M. Aslam, Tetrahedron 44: 281 (1988).

    Article  CAS  Google Scholar 

  19. K. Tang, M. Aslam, E. Block, T. Nicholson, and J. Zubieta, J. Inorg. Chem. 26: 1488 (1987).

    Article  CAS  Google Scholar 

  20. B.-K. Boo, E. Block, H. Kang, S. Liu, and J. Zubieta, Polyhedron 7: 1397 (1988).

    Article  Google Scholar 

  21. P. Beak and P.D. Becker, J. Org. Chem. 47: 3855 (1982).

    Article  CAS  Google Scholar 

  22. A.R. Katritzky, J.M. Aurrecoechea, and L.M. Vazquez de Miguel, J. Chem. Soc. Perkin Trans. I769 (1987).

    Article  Google Scholar 

  23. A.I. Meyers and M.E. Ford, J. Org. Chem. 41: 1735 (1976).

    Article  CAS  Google Scholar 

  24. C.R. Johnson and K. Tanaka, Synthesis 413 (1976).

    Google Scholar 

  25. J.M. Berg and R.H. Holm, J. Am. Chem. Soc. 107: 917, 925 (1985).

    Article  CAS  Google Scholar 

  26. G.H. Posner and K.A. Canella, J. Am. Chem. Soc. 107: 2571 (1985).

    Article  CAS  Google Scholar 

  27. G.D. Figuly, Ph.D. Thesis, University of Illinois-Urbana (1981).

    Google Scholar 

  28. G.D. Figuly, C.K. Loop, and J.C. Martin, J. Am. Chem. Soc. 111: 654 (1989).

    Article  CAS  Google Scholar 

  29. E. Block, V. Eswarakrishnan, M. Gernon, G. Ofori-Okai, C. Saha, K. Tang, and J. Zubieta, J. Am. Chem. Soc. 111: 658 (1989).

    Article  CAS  Google Scholar 

  30. K. Smith, C.M. Lindsay, and G.J. Pritchard, J. Am. Chem. Soc. 111: 665 (1989).

    Article  CAS  Google Scholar 

  31. E. Block, M. Gernon, H. Kang, G. Ofori-Okai, and J. Zubieta, Inorg. Chem. 28: 1263 (1989).

    Article  CAS  Google Scholar 

  32. E. Block, H. Kang, G. Ofori-Okai, and J. Zubieta, Inorg. Chim. Acta 156: 27 (1989).

    Article  CAS  Google Scholar 

  33. E. Block, G. Ofori-Okai, and J. Zubieta, J. Am. Chem. Soc. 111: 2327 (1989).

    Article  CAS  Google Scholar 

  34. E. Block, H. Kang, G. Ofori-Okai, and J. Zubieta, Inorg. Chim. Acta 166: 155 (1989).

    Article  CAS  Google Scholar 

  35. E. Block, M. Gernon, H. Kang, and J. Zubieta, Angew. Chem. Int. Edn. Engl. 27: 1342 (1988).

    Article  Google Scholar 

  36. E. Block, M. Gernon, H. Kang, S. Liu, and J. Zubieta, Inorg. Chim. Acta 167: 143 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Block, E., Gernon, M., Zubieta, J. (1990). The Synthesis and Metal Complexes of Sulfur-Containing Models for Nitrogenase Enzymes. In: Chatgilialoglu, C., Asmus, KD. (eds) Sulfur-Centered Reactive Intermediates in Chemistry and Biology. NATO ASI Series, vol 197. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5874-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5874-9_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5876-3

  • Online ISBN: 978-1-4684-5874-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics