Electronic Transitions in Sulfur-Centered Radicals by Means of MSXα Calculations

  • Maurizio Guerra
Part of the NATO ASI Series book series (NSSA, volume 197)


Highly reactive sulfur-centered radicals, which play an important role in air pollution and in biological systems, are usually idientified by their UV/visible absorption and/or ESR spectra. Spectral information are sometimes insufficient for an unequivocal characterization of the transient species. Their identification could be achieved by comparing the optical absorption spectra with the energy and intensity of electronic transitions computed using quantum mechanical methods. The MSXα method1 has proved to be a powerful tool for assigning optical transitions in radicals,2 and is used to assign the spectral bands of transient sulfur-centered radical species to specific electronic transitions.3


Valence Transition Electronic Transition Energy Rydberg Transition Asymmetric Radical Laser Induce Fluorescence Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.H. Johnson, Adv. Quantum Chem. 7: 143 (1973).CrossRefGoogle Scholar
  2. 2.
    C. Chatgilialoglu and M. Guerra, J. Am. Chem. Soc. 112: 0000 (1990).CrossRefGoogle Scholar
  3. 3.
    M. Guerra and C. Chatgilialoglu, unpublished results.Google Scholar
  4. 4.
    T.A. Koopmans, Physica 1: 104 (1933).CrossRefGoogle Scholar
  5. 5.
    J.C. Slater, “Computational Methods in Band Theory”, Plenum Press, New York (1971).Google Scholar
  6. 6.
    C. Chatgilialoglu and M. Guerra, Electronic spectra of group-NB centered radicals using MSXa method, presented at EUCHEM Conf. on Organic Free Radicals, Assisi, Italy, Sept. 22–26, 1986.Google Scholar
  7. 7.
    R. Kjellander, Chem. Phys. 12: 469 (1976).CrossRefGoogle Scholar
  8. 8.
    C. Chatgilialoglu, “Handbook of Organic Photochemistry”, J.C. Scaiano, ed., CRC Press, Boca Raton, Part N, Section 1 (1989).Google Scholar
  9. 9.
    M. Suzuki, G. Inoue, and H.J. Akimoto, Chem. Phys. 81: 5405 (1984).Google Scholar
  10. 10.
    M. Guerra, G. Distefano, D. Jones, F.P. Colonna, and A. Modelli, Chem. Phys. 91: 383 (1984).CrossRefGoogle Scholar
  11. 11.
    H.E. Hunziker and H.R. Wendt, J. Chem. Phys. 64: 3488 (1976).CrossRefGoogle Scholar
  12. 12.
    O. Ito and M. Matsuda, Bull. Chem. Soc. Jpn. 51: 427 (1978).CrossRefGoogle Scholar
  13. 13.
    T.J. Burkey, J.A. Hawari, F.P. Lossing, J. Lusztyk, R. Sutcliffe, and D. Griller, J. Org. Chem. 50: 4966 (1985).CrossRefGoogle Scholar
  14. 14.
    O. Schurath, M. Weber, and H.K. Becker, J. Chem. Phys. 67: 110 (1977).CrossRefGoogle Scholar
  15. 15.
    C. Chatgilialoglu, D. Griller, and M. Guerra, J. Phys. Chem. 81: 3747 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Maurizio Guerra
    • 1
  1. 1.Consiglio Nazionale delle RicercheI. Co. C. E. A.Ozzano Emilia (Bologna)Italy

Personalised recommendations